(< Chincon Application Note ANOOS

ANOOS

Oversampling and data decision for the CC400/CC900

By K. T. Heien, T. A Lunder and K. H. Torvmark

Keywords

e Oversampling
» Data decision
e Data synchronisation
e Microchip PIC

Introduction

One of the most important issues affecting
the implementation of microcontroller
software deals with the data-decision
algorithm. Data-decision refers to decoding
the DIO-pin from the CC400/CC900. Two
main principles exist for decoding
Manchester-coded data: Data decision
based on timing the period between
transitions, and data decision based on
oversampling.

Decoding based on measuring the time
between transitions is easy to implement
but suffers in performance when used on a
noisy signal. This has to do with the noise
characteristic of the demodulated RF-
signal. When a receiver reaches the
sensitivity limit, the received data will
contain “spikes” or short transients due to
noise. If the detection is based on finding

» Software RSS! / signal quality
e Resynchronisation
» Software squelch

the time period between changes in the
data level, decoding errors will occur
because of these spikes. By using
oversampling, taking multiple samples of
the same bit, this noise can filtered out by
using a majority vote decision.

This application note describes
oversampling and data decision in detail.
The principles are illustrated in flowcharts
and C-code. This application note also
contains optimized assembly code written
for the Microchip PIC16F87x series of
microcontrollers.

Chipcon is a supplier of RFICs for all kinds
of short range communication devices.
Chipcon has a world-wide distribution
network.

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 1 of 45

(< Chincon Application Note ANOOS

Table of Contents

WHY USE OVERSAMPLING? ...ttt e e e e e e 3
MICROCONTROLLER LIMITATIONSoeiiiiiiiiiii et 4
DATA DECISION AND SYNCHRONISATIONuuiiiiieeeeiiieeei e eeeeeeees 4
RESYNCHRONISATION ..ottt ettt e e e e e e e e 6
SOFTWARE SQUELGCH ..ottt e et e e e e e e e e e e e e e eeennes 8
MCU INTERFACE. ... e e e e e 9
DATA DECISION ALGORITHM. ... e e 10
USING THE SOFTWARE ...t 11
CALCULATING VARIABLES FOR DESIRED OSCILLATOR FREQUENCY AND

DATA RATE e 13
SOFTWARE IMPLEMENTATIONcciiiiiii ettt r e e e e e eeeees 14
ALGORITHM FLOWGCHARTS ..o 14
EXAMPLE SOURCE CODE — C VERSION ..ot 20
EXAMPLE SOURCE CODE — ASSEMBLY VERSION ..., 29

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 2 of 45

< Chipcon Application Note ANOOS

Why use oversampling?

The figure below illustrates the principle of oversampling. A data stream of Manchester-coded
data (110) is transmitted. In Manchester code a logical 1 is coded as a high to low transition in
the middle of the bit period, and a logical O is coded as a low to high transition in the middle of
the bit period. This is done to ensure a constant DC-level. As illustrated in the figure each bit
has a transition. Each level in one bit is called a chip, giving two chips per bit. Therefore, the
baud-rate is twice the bit rate for Manchester coded data.

The received signal with noise illustrates how the noise can corrupt the data received when
the receiver is near the sensitivity limit. This noise is often concentrated near the edges of
each chip. Here the noise is illustrated as short transients, but there will also be some duty-
cycle error and some jitter when the receiver is near the sensitivity limit.

Bitl Bit2, Bit 3
Transmitted
Manchester coded data §
Received data with noise
8 samples pr. chip
Decoded NRZ data
-
1 1 0

Figure 1 Principle of oversampling

By taking several samples per chip, the noise is filtered out and the decoded NRZ data
recovered is error-free. This would not be the case if the decision had been made from
measuring the time between level changes. The noise would have corrupted the resulting
decoded data. For this reason we recommend implementing oversampling in the decision
algorithm for best overall performance.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 3 of 45

(< Chincon Application Note ANOOS

Microcontroller limitations

The main factor influencing the implementation of the oversampling routine is the speed of the
microcontroller. The total number of machine cycles available for decoding the data is given
as:

MCU
MachineCodePerBit = ——— 2o
Datarate

If you use a 1.2 kbps data rate, and your microcontroller runs at 4MIPS (million instructions per
second), you can use up to 3300 instructions per bit. Doing 4 samples per chip, or 8 samples
per bit, gives 3300/8 = 416 instructions per sample.

For most microcontrollers, speed is at a premium, and the decoding routine must be as
efficient as possible. In most cases, an optimized assembly code routine should be used.

Data decision and synchronisation

There are different ways to decode the sampled data using oversampling. The easiest way is
to count the number of high-level samples and the number of low-level samples. The level of
the chip can then be decided by majority vote.

Since noise is more likely to appear near the edges of each chip, the algorithm can be
improved by giving the samples in the middle of each chip higher priority than the samples
near the edges.

Due to the fact that the received signal is Manchester coded, a correlation algorithm can be
used to synchronise and decode the sampling. A simple implementation is illustrated below. In
this example we use 6 samples per chip.

Samples from last chip in the bit Samples from first chip in the bit
Inverter
6 bit shift register 6 bit shift register
Sampled
data — Ky Xy X K| Xy K Yo [Ty [T |¥a ¥y [Ts |—»
input

Zero Counter

5 5
A=12-Y X, -3,

n=0 k=0

£

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 4 of 45

< Chipcon Application Note ANOOS

This correlation algorithm takes 6 samples per chip. Each new sample goes into a shift
register, and the previous samples are shifted to the right. The inverter between the two 6 bit
shift registers is used because of the Manchester coding of the data. For each new sample the
algorithm calculates A (correlation score). This value provides synchronisation information and
an estimate of the bit value.

To illustrate this, let us take an example. If the value in the shift register is a logical ‘0’ and the
received bit stream is ‘1011’, then value A will change as shown in the figure below.

0 6 12 18 24 30 36 42 48

Sample no. —a— Perfect signal
- - 4 - - Signal with noise

As illustrated the value of A can vary between 0 and 12 when using 12 samples per bit. Since
A is calculated for each sample, A can be used to determine synchronisation status. When
noise is present, the change in A will not be linear, however. Due to the noise some samples
will have level error, giving higher values for logical ‘0’ and lower values for logical ‘1. The
maximum and minimum levels of A will still give the same information about the logical level
and synchronisation.

When using Manchester-coding, the signal can change value both at the start of the bit as well
as in the middle. The software must “know” which transition is which. To be able to do this, the
software must be synchronised to a known bit pattern. The usual way to do this is to send a
preamble before the data is transmitted. The receiver can then make a synchronisation on this
preamble to get the timing correct before the data decision starts.

Using this correlation algorithm, it is easy to implement higher priority for the samples in the
middle of the chip. This can be done by multiplying the value of the samples that are most

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 5 of 45

(< Chincon Application Note ANOOS

likely to be correct with a fixed value before calculating A. Further samples at the edges of
each chip can be ignored in the calculation of A, to remove the uncertainty of the samples
where the noise is most likely to appear. By implementing a correlation algorithm in software, it
is easy to find the best noise reduction filtering parameters for the application.

Resynchronisation

As explained above, the software algorithm needs to synchronise with the signal before the
correlation algorithm can calculate valid values for A. Depending on the length of the data
stream and the accuracy of the crystal, the sampling clock in the receiver will drift in
comparison to the transmitter clock. This means that the synchronisation made at the
beginning of the data stream not necessarily is correct at the end. The total drift of the data is
given by:

AT =T,, » XTAL

Accurancy

Where T, is the length of the message, and XTAL,_,..., IS the relative accuracy of the receiver
and the transmitter. That means that if the crystals for both the transmitter and the receiver are
rated at +/- 10 ppm, then XTAL ..., IS 20 ppm as a worse case.

If the total drift of the data (AT) is higher than the sampling rate, the correlation algorithm is not
synchronised perfectly, and will not calculate the correct value of A even for a perfect signal.

This means that when T, < AT , a resynchronisation must be performed before proceeding
with the data decision. T_is the sampling clock in the receiver.

There are many different ways of implementing a resynchronisation algorithm. A convenient
method is to use the value of A in the correlation algorithm to decide if a resynchronisation is
needed. The idea here is to resynchronise to the most likely sample near the bit decision, that
is, at the maximum (logical 1) or minimum (logical 0) of A. To illustrate this, let us look closer to
the value of A at different samples around a maximum were logical 1 is detected. This is
illustrated for tree cases in the figure below.

At °
Case 1 | .
No resynch .
Case 2 At .
Resynch at N+1 .
°
Case 3 i .
Resynch at N-1 .
% e
N-1 N N+1

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 6 of 45

< Chipcon Application Note ANOOS

At N the bit is decided based on the value of A. After the sample N+1 the algorithm must check
if a resynchronisation should be performed before proceeding with the next bit. In the figure
the value of A is illustrated at the sampling time N-1, N, and N+1 for three different cases. For
all cases the data decision is done at N.

For case 1 we see that A has a lower value at sample N-1 and N+1 than for sample N. This
means that the bit decision is done on the maximum of A, and the software does not need to
make a resynchronisation.

For case 2 the value of A is higher for the sample N+1 than the case is for sample N. Also, the
value of A at N-1 is lower than for the sample N. This means that the maximum of A is more
likely to take place after the bit decision sample N. The correlation algorithm should be
resynchronised to the sample N+1 before continuing.

Case 3 is very similar to case 2, but here the correlation algorithm should be resynchronised to
sample N-1, since the maximum value of A is likely to take place before N.

There is also one other possibility that is not illustrated in the figure. If the value of A at
bothN+1 and N-1 is higher than the value at N, then the algorithm does not know if it should
resynchronise to an earlier or later sample. For this reason it should not do resynchronisation
here, but wait until the next bit decision sample later in the message.

The description of the resynchronisation above is based on the samples near the bit decision
samples for logical 1 (maximum of A). A similar calculation must be implemented for the
decision of logical 0 (minimum of A). An overview of the possible cases for this simple
resynchronisation algorithm is given in the table below.

Table 1 Resynchronization criteria

Logical level at N Resynch to N-1 No Resynch Resynch to N+1

AN-1> AN> AN-+ AN> AN-+ AND AN>'A\N-l AN-1< AN< AN-+
1 OR
A<A_ AND A<A,,

A< A AL A> A AND A>A Au> A AL
0 OR
A<A_ AND A <A,

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 7 of 45

< Chipcon Application Note ANOOS

Software RSSI / Signal Quality

With the information of the correlation value A, the software also has the opportunity to
implement a kind of RSSI. By sending a preamble of only logical 1s, the signal quality on this
received preamble can be calculated as:

R$ = A\woise
perfect
Here A, is the correlation score for a perfect signal, and A ., is the correlation score on the

actual received data. If we use the correlation algorithm described above, the value of A is
12 for a perfectly received logical 1. Depending on the number of samples with errors, the
“RSSI” value will change as in the figure below.

- 0.9
- 0.8
- 0.7
- 0.6
- 0.5
- 0.4
- 0.3
- 0.2
- 0.1
‘ ‘ ‘ ‘ \ 0
12 11 10 9 8 7 6 5 4 3 2 1 O

Numbers of samples with error

RSSI

This RSSI level can be used in a signal quality algorithm to implement a type of software
based RSSI giving a measure of the quality of the received data. One use of this RSSI is to
reduce the transmitted power and thus reduce the overall system power consumption.

Software squelch

When using Manchester coded data, keeping track of how many samples are equal during a
bit can be used to implement software squelch. This is useful if the transmitter does not
transmit continuously. In a proper Manchester coded signal, the two chips in a bit should be
unequal. If most of the samples in a bit are equal, it is probable that the signal received is not a
proper Manchester coded signal. If this occurs several bits in a row, a reasonable conclusion is
that no proper signal is received, i.e. the signal received is noise. When this occurs, the MCU
stops sending out clock and data signals, and waits for a synchronisation preamble to occur.
Using software squelch prevents the application circuit from receiving noise.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 8 of 45

(< Chincon Application Note ANOOS

MCU interface

To provide a practical example of an oversampling-based data-decision algorithm, we have
written a program for the Microchip PIC16F87x series of microcontrollers. The code will also
work with other PIC controllers, as long as they have the same instruction set and enough
program memory. Both assembly code and C-code versions have been provided. Chipcon
recommends using assembly code for production code, however.

For the purposes of the example, the PIC functions as an interface between the
CC400/CC900 and an application circuit. When in transmit mode, the PIC transmits a clock to
the application circuit, the application sends an NRZ-coded data stream back, the PIC then
Manchester-encodes the data and sends it to the CC400/CC900. In receive mode, the
CC400/CC900 sends Manchester-encoded data to the PIC, the PIC synchronises to the bit
stream and decodes it into NRZ-form, which it sends to the application circuit together with a
synchronised clock signal. The application circuit can switch the transceiver into receive,
transmit or power-down modes by altering the PD and RX_TX signals. The PIC takes care of
configuring the CC400/CC900 for the different modes.

After power-on, reset or a mode change, the MCU configures the CC400/CC900. It also
initialises its own registers. It is not possible to change modes before the MCU is finished with
configuring the current mode.

In PD mode, the MCU powers down the CC400/CC900 and then goes into sleep mode itself.
The configuration takes 1768 instruction cycles. When in PD mode, the MCU can be
awakened by changing the RX_TX or PD signals.

In TX mode, the MCU configures the CC400/CC900 for transmission. This takes 1781
instruction cycles. When the configuration is finished, data can be sent. A preamble should be
sent before starting transmission of data, in order to allow the receiver to synchronise to the
data rate. This is the responsibility of the application circuit.

Table 2 Mode pin coding

Pin Mode

PD RX_TX

0 0 Transmit mode (TX)

0 1 Receive mode (RX)

1 X (Don't care) Power-down mode (PD)

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 9 of 45

(< Chincon Application Note ANOOS

CLKk_ouT
DATA_IN
DATA_OUT MCU
P
Ry_TH
el o] 153 w]
E b @ P
= 9] Cx
* ™ juzl
m
h 4 b b ¥
CC400/CCB00

Figure 2 Block diagram of system

DIO-PIN _
(MANCHESTER) | ; | |
bit 1 it 2

TAKE NEW SAMP

ROMDOEN M HAEAEEEEEERIAAEEERE 444 411 410
CLK_OUT -

DATA_DUT-PIN
(NRT) | [i | niz

Figure 3 Timing in RX mode

CLK_OUT |

DATA_IM-FIN

(NRI) ERESEERED

DATA 1M

PIN READ £ 4 4 4+ 4

DIO-PIN : : :

IMANCHESTER) | E | i | B | E |
hit 1 hit 2 hit 3 hit 4

b t

Beginning Baud-
of nesw bit change

Figure 4 Timing in TX mode

Data decision algorithm

The software implements a data decision algorithm based on the principles discussed earlier
in this document, using 8 samples per bit. This was found to be sufficient. In our tests, using
16 samples per bit did not improve performance enough to justify using twice as much
processor time as 8 samples per bit. This code treats all samples equally, and does not
implement the suggested sample prioritisation scheme; this is left as an exercise for the

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 10 of 45

(< Chincon Application Note ANOOS

reader. The data decision is based on a pure majority vote. If A is greater or equal to 4, the bit
is a logical ‘1’, else itis a ‘0".

Synchronisation and resynchronisation is implemented. Before sending data, a preamble of
‘1’s must be sent, the length of which depends on the value of the constants in the software
and on the synchronisation required by the CC400/CC900. The receiver is able to synchronise
on a data stream with a data rate within £6.2% of its own.

The source code also implements data checking to determine whether it is receiving valid
Manchester-coded data or not. If several consecutive bits fail this test, the software declares
that it is out of synchronisation, and attempts to synchronise again. This is useful when
receiving data from a transmitter that does not transmit continuously.

Using the software

This software was developed and tested using a Microchip PIC16F877. It can be ported to any
controller using the same instruction set. To support all possible baud rates for the
CC400/CC900, the controller must be run at 20 MHz or faster.

Both PORTB and PORTC are used, the pin allocations are shown below.

PIN NAME DIRECTION MCU-PIN COMMENTS

CLK_OuUT ouT RBO In TX_mode: Data read from DATA_IN pin on the
rising CLK_OUT edge.
In RX_mode: New data valid on DATA_OUT on the
falling CLK_OUT edge.

DATA IN IN RB1 In TX _mode: Data read in NRZ format.

DATA OUT ouT RB2 In RX_mode: Data from CCX00 in NRZ format.

PD IN RB4 Interrupt-on-change pin, used for mode decision:
PD=1 -> Power down mode (PD).
PD=0 -> Power on.

RX_TX IN RB5 Interrupt-on-change pin, used for mode decision:
RX_TX=1 -> Receive mode (RX).
RX_TX=0 -> Transmit mode (TX).

PDATA ouT RCO Used for CCX00 configuration.

CLOCK ouT RC1 Used for CCX00 configuration.

STROBE ouT RC2 Used for CCX00 configuration.

DIO IN/OUT RC3 In RX-mode: MCU reads data from CCXO00.
In TX-mode: MCU writes data to CCXO00.
Signal is Manchester coded.

LOCK ouT RC4 Indicates whether MCU is synchronised or not:

LOCK=1 -> MCU is synchronised
LOCK=0 -> MCU is not synchronised

Depending on the application, some variables in the software may have to be changed.
TIMING_RX, TIMING_TX, Rate_RX and Rate_TX must be changed for different data rates.
The following table shows values for the most common combinations of oscillator frequencies
and data rates. This table is ONLY valid for the assembly language version! Timing using C
code is not predictable, and must be measured from simulations. Tables for the C code

version are therefore not included.

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 11 of 45

(< Chincon Application Note ANOOS

Table 3 Assembly code timing

Foec=20 MHz
Data rate TIMING_RX | Rate_RX | Error TIMING_TX Rate_TX Error
(kbps)
9.6 OxES5* 0xDO0 0.160% | 0x84 0xDO0 0.224%
4.8 0xC5 0xDO0 0.160% | 0x02 0xDO 0.032%
2.4 0x84 0xDO0 0.160% | OXFF 0xD1 0.064%
1.2 0x02 0xDO0 0.160% | OX7F 0xD3 0.304%
0.6 OxFF 0xD1 0.160% | OX7E 0xD4 0.152%
0.3 OxFD 0xD2 0.032% | OX7E 0xD5 0.004%
Fo-=16 MHz
Data rate TIMING_RX | Rate_RX | Error TIMING_TX Rate_TX Error
(kbps)
9.6 - - - - - -
4.8 0xD2 0xDO0 0.160% | 0x36 0xDO 0.080%
2.4 O0x9E 0xDO0 0.160% | 0x33 0xD1 0.040%
1.2 0x36 0xDO0 0.160% | Ox31 0xD2 0.140%
0.6 0x33 0xD1 0.160% | 0x31 0xD3 0.250%
0.3 0x31 0xD2 0.080% | 0x30 0xD4 0.035%
F..=10 MHz
Data rate TIMING_RX | Rate_RX | Error TIMING_TX Rate_TX Error
(kbps)
9.6 - - - - - -
4.8 OxE5 0xDO 0.160% | Ox84 0xDO0 0.224%
2.4 0xC5 0xDO0 0.160% | 0x02 0xDO 0.032%
1.2 0x84 0xDO0 0.160% | OXFF 0xD1 0.064%
0.6 0x02 0xDO0 0.160% | OX7F 0xD3 0.304%
0.3 OxFF 0xD1 0.160% | OX7E 0xD4 0.152%
Fo..=4 MHz
Data rate TIMING_RX | Rate_RX | Error TIMING_TX Rate_TX Error
(kbps)
9.6 - - - - - -
4.8 - - - - - -
2.4 - - - - - -
1.2 0xD2 0xDO0 0.160% | 0x36 0xDO 0.080%
0.6 O0x9E 0xDO0 0.160% | 0x33 0xD1 0.040%
0.3 0x36 0xDO0 0.160% | 0x31 0xD2 0.140%
0sc=3.6864 MHz
Data rate TIMING_RX | Rate_RX | Error TIMING_TX Rate_TX Error
(kbps)
9.6 - - - - - -
4.8 - - - - - -
2.4 - - - - - -
1.2 0xD6 0xDO0 0% 0x46 0xDO 0.366%
0.6 O0xA6 0xDO 0% 0x43 0xD1 0.130%
0.3 0x46 0xDO 0% 0x41 0xD2 0.326%

* Use one NOP instruction in end_interrupt_RX. Otherwise, remove it.

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 12 of 45

< Chipcon Application Note ANOOS

Calculating variables for desired oscillator frequency and data rate
The values for TIMING_RX, TIMING_TX, Rate_RX and Rate_TX are calculated as follows:

1. Determine the number of MCU instructions available per interrupt. A value must be
calculated for both RX and TX interrupts. The data rate limitation for the system is set by
the RX value, which cannot be less than 65 (The RX interrupt uses 65 instructions in the
assembly language code). The number of instructions available are given by equations 1
and 2:

. F

RX :#Instructions/ Interrupt = 32% [1]
. F

TX: #Instructions/ Interrupt = 80?:; 12

F.< is the MCU clock frequency, and R is the data rate. The integer number closest to the
value given by the equation will give the most exact interrupt timing.

2. Select the Rate_RX and Rate_TX values. These values determine the clock division ratio
between the MCU clock frequency and the MCU timer. The possible values are 1/2, 1/4,
1/8, 1/16, 1/32, 1/64, 1/128 and 1/256. The ratios Rate_RX and Rate_TX should be as
small as possible in order to give as good timing accuracy as possible.

TIMING _ RX =256 — (#Instructions/ Interrupt —12) [Rate _ RX [3]

TIMING _TX =256 — (#Instructions/ Interrupt —13) [Rate_ TX [4]

The constants in the above equations are used to compensate for the time spent between
the triggering of the timer interrupt and the resetting of the timer. If the code is modified so
that resetting the timer occurs sooner or later, these constants must be modified. For
instance, the C-code version uses 63 instructions for TX and 64 instructions for RX.
Determining the values for these constants is done most easily by using a simulator and
examining the instruction cycle counter.

3. Inthe end, we must check some conditions. TIMING_RX and TIMING_TX must be
between 0 and 256. If the values do not satisfy these conditions, the next larger values of
Rate_RX or Rate_TX must be chosen, and new TIMING_RX and TIMING_TX must be
calculated.

Example:

MCU clock frequency F_..=16 MHz
Data rate: R=1200 bps

Equations 1 and 2 give the results:

RX : #Instructions / Interrupt = 417 (416.67)
TX : #Instructions / Interrupt = 1667 (1667.67)

Rate RX should be as low as possible. We try %, this results in TIMING _RX=53.5. This is not
an integer number, we therefore round it to the closest possible integer, giving
TIMING_RX=54. This number satisfies the conditions.

Rate TX should also be as low as possible, but values of 1/2 and 1/4 result in negative values
for TIMING_TX, and should not be used. Setting Rate_TX=1/8 results in TIMING_TX=49.25.
We round this to the nearest integer, giving us a final value for TIMING_TX=49.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 13 of 45

< Chipcon Application Note ANOOS

The final results are then:

TIMING_RX=54 (0x36)

TIMING_TX=49 (0x31)

Rate_RX = 1/2 (0xDO, see Microchip datasheet)
Rate_TX = 1/8 (0xD2, see Microchip datasheet)

Software implementation

The program is available in two versions; an assembly language version and a version written
in ‘C’. The ‘C’ version is included as it is easier to read and understand, but Chipcon
recommends using the assembly language version for performance reasons. All timing values
given relate to the assembly language code. The timing of the ‘C’ version will vary according to
optimisation settings and compiler settings. In our tests, using IAR’s C-compiler with all speed
optimisations turned on, we managed to get the C routine to receive at 2400 bps using a 20
MHz oscillator clock for the PIC.

Both versions use the same algorithm, making it easy to refer to the ‘C’ version if the assembly
version is difficult to understand.

Algorithm flowcharts

When the MCU is reset, the main program starts executing. The main part of the program first
sets up I/O ports, then it runs ModeDecision. If the PD pin is high, the program configures the
CC400/CC900 for power-down mode and the MCU goes into sleep mode. It will awaken when
either the PD or the RX_TX pin changes state. If the PD pin is low, the program checks the
RX_TX pin. If it is high, the program enters TX mode, configures the CC400/CC900 for
transmission, and configures the DIO pin as outgoing. If the RX_TX pin is low, the program
enters RX mode, configures the CC400/CC900 for receive, and configures the DIO pin as
incoming.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 14 of 45

< Chipcon Application Note ANOOS

Initialise
ModeDecision
O 17
ConfigurePD
0 0
ConfigureRX ConfigureTX
¢ A A

Main program loop]

Figure 5 Main program algorithm

Configuring the CC400/CC900 is done using the CLOCK, PDATA and STROBE pins, a full
configuration consists of 8 words of 16 bits each. The register values for each mode should be
calculated using SmartRF Studio, and the user can then paste in the proper values into the
constant declarations. In the ‘C’ version, the configuration data resides in three constant
arrays, RX_CONFIGJ], TX_CONFIG[] and PD_CONFIG]]. In the assembly language version,
the value of each register resides in two constants for each mode. For example, the value of
the A register in TX mode is located in A_TX_H_val and A_TX_L_val. The 8 most significant
bits reside in A_TX_H_val, and the 8 least significant bits in A_TX_L_val. The data is sent with
the most significant bit first.

When the configuration is done, the program enters the main program loop. This is typically
where user code will be added. As written, the main loop merely writes the synchronisation
status onto the SYNC pin.

In RX and TX mode, the main program loop will be interrupted when interrupts occur. If either
the RX_TX or PD pin changes value, the ModeDecision routine will be executed, and the
software changes mode. If a TMRO interrupt occurs, the software will execute the RX or TX
timer interrupt handler according to which mode is active.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 15 of 45

< Chipcon Application Note ANOOS

Interrupt

RXTX

|

RXInterrupt TXInterrupt ModeDecision

Figure 6 Interrupt handling

In TX mode 2 timer interrupts occur during one bit period. If Number is 0, the interrupt is the
first one this bit period. The CLK_OUT pin is set high, the DATA_IN pin is read and stored in
the Read variable. The DIO pin is set to the same value as DATA_IN, and Number is setto 1
This is the first baud of the Manchester coded signal. If Number is 1, the interrupt is the
second this bit period. The CLK_OUT pin is cleared, the DIO pin is inverted and Number is set
to 0. This represents the second baud of the Manchester coded signal. At the end of the TX
interrupt handler, TOIF is cleared. This bit indicates that a TMRO interrupt has occurred, and
must be cleared before returning from the interrupt.

TXInterrupt

[J

CLK_OuUT=1 CLK_OUT=0
Read:D‘ATAle pIo= i"ermd
Read
v v
DIO=Read Number=0
v
Number=1

A A

End TXInterrupt

Figure 7 Timer interrupt in TX mode

In RX mode 8 timer interrupts occur during one bit period. Each time a timer interrupt occurs, a
sample is taken of the DIO pin. The last two calculated values of A are stored in variables Anl
and An2. These values are used for resynchronisation. A new value for A is then calculated.
The Sample variable (called R in the assembly version) is used as a counter, and contains the
number of the current sample. Resynchronisation is done by adjusting the value of this

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 16 of 45

< Chipcon Application Note ANOOS

variable, and can be done once per bit. The ResyncEnable variable (called R_ENABLE in the
assembly version) is one when resynchronisation is to be performed. Resynchronisation is
done at the start of each bit. Because of resynchronisation, Sample (R) can be 0 during two
consecutive interrupts, and the ResyncEnable(R_ENABLE) variable is therefore needed to
ensure that only one resynchronisation is done per bit.

When Sample (R) is equal to 3, we are in the middle of the bit, and the CLK_OUT pin is set
high. The DATA_OUT pin is valid when the CLK_OUT pin is set low, which occurs at the start
of each bit.

When Sample (R) is equal to 7, an entire bit has been sampled. The program then checks the
Sync variable. This flag is set if the system has been synchronised. As long as Sync is 0, no
data is sent on the DATA_OUT pin, and the CLK_OUT pin remains high. If Sync is 0, the
system attempts to synchronise itself. The system must a certain number of successive
signals over a certain level. The value A_LIMIT2 defines the required level A must exceed,
and can easily be changed in the code. COUNT_LIMIT defines the number of successive ‘1's
the system requires before it is synchronised. As a worst case, the system can require
4+COUNT_LIMIT consecutive 1's before it is synchronised.

When Sample (R) is equal to 7 and Sync is set to 1, the software checks signal quality. If A is
to close to the centre of possible values, the signal is regarded as being a poor-quality
Manchester coded signal (both chips are equal), and the BitErrors variable is increased. If the
value of this variable equals BIT_ERROR_LIMIT, the system has received
BIT_ERROR_LIMIT number of bad bits in a row, and the software sets Sync to 0, requiring the
software to synchronise on a preamble of 1's again. This part of the code can be removed if
the transmitter will be transmitting continuously, but in a typical system it is useful to determine
if the receiver is receiving valid data or not.

After the data quality check, the data decision itself is performed. If A is larger than A_LIMIT,
the signal received is a ‘1’, and the DATA_OUT pin is set high. If the signal is equal to or lower
than A_LIMIT, the signal received is a ‘0’, and the DATA_OUT pin is set low. The Sample (R)
variable is set to 0, and the ResyncEnable (R_ENABLE) flag is set, indicating the a
resynchronisation should be performed at the next interrupt.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 17 of 45

(< Chincon Application Note ANOOS

RXInterrupt

Read DIO pin
v v
An2=An1l
An1=An0
¢ rYes
Calculate new A
CLK=0
No
<+—No @
Yes
No h 4
CLK=1
1 ResyncEnable >+ —» DATA_OUT=1 |—
lﬁ Yes -
Resync
@ Yes @
No
v v DATA_OUT=0 [

No

fes ®

Sync=1 Count=Count+1 Count=0 A
Sample=0,
I L ResyncEnable=1

. |

>

A 4
Return from
interrupt

Figure 8 Timer interrupt in RX mode

When the ResyncEnable (R_ENABLE) flag is set, resynchronisation is performed. Normally
the Sample (R) variable is increased by 1 every timer-interrupt, but resynchronisation can
cause it to be increased by 2 or remain unchanged. This will make the next bit decision come
earlier or later in time, respectively. At the time resynchronisation is performed, the value of A
that was valid at the last bit decision is stored in variable Rn1. The values of A just before and
just after the decision are stored in An2 and AnO (A), respectively. The resynchronisation is
based on these values. If the timing is correct, Anl should be larger than the other two if a 1
was received, and lower if a 0 was received. If not, a resynchronisation may be necessary. If
two or more of the values are the same, no resynchronisation is performed. The figure below

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 18 of 45

< Chipcon Application Note ANOOS

shows the different possibilities for the three values of A. The arrow indicates the time for the
next bit decision, while the line in the middle (An1l) is the time for the last decision. The
algorithm differs slightly when the MCU is not synchronised. This is done to ensure that bit
decisions will occur at maxima and not minima (synchronisation on 1's).

<%

No
Yes
Yes @ No
No
Yes l
* A A A A y
R=R+2 R=R+2 R=R R=R R=R+1 R=R+1 R=R R=R R=R+2
An2 Anl AnO
¢ el e eieeie o e e o
A 4 4 b 4 b AN 4 b 4 b
Pl)] i i i Poe o | o |
i e fe | oe@
¢ e el e
Pe i i i i i
coe

te ottt

Next bit decision

Figure 9 Resynchronization algorithm

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 19 of 45

< Chipcon Application Note ANOOS

Example source code — C version

/***************************************~k~k~k~k~k~k~k~k~k~k~k~k~k~k***********************/

/* Application note 008 */
/* Oversanpling and data decision for the CC400/ CC900 */
/* */
/* File: AN_008. ¢ */
/* */
/* Mcrocontroller: */

/* M crochi p PI C16F87x or conpatibl e */
/* By changi ng hardware- and conpil er-dependant code, */
/* this code can be used with any C conpiler. */
/* Code was devel oped and tested using AR s C Conpiler for */
/* m d-range PIC MCUs and a PI C16F877 MCU. */
/* */
/* Aut hor: Code witten by Karl H Torvmark based on an assenbly */
/* | anguage program by Kjell Tore Heien. */
/* */
/* Contact: Chi pcon AS +47 22 95 85 44 */
/* wi rel ess@hi pcon. com */
/* */

KR Kk ko kK Kk ok ok kR Kk k ok kR R Rk k ok kR Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk ok ko kR Rk ok ok ok kR Rk ok ok ok ok ok k ko

[R Kk Kk kR Kk k ok kR R Xk k ok kR R Rk k ok kR R Rk ko kR Rk ok k kR Rk kR ok kR Rk ok k ok kR Rk ok ok ok kR Rk ok ok ok kR k ko

/* DESCRI PTI ON */
/* */
/* Ceneral */
/* */
/* This code inplenments oversanpling of the output signal froma CC400/ */
/* CC900 RF-transceiver. The output signal fromthe transceiver is coded in */
/* Manchester format. The MCU converts this signal to an NRZ signal by */
/* taking 8 sanples per bit. Signal decision is by najority vote based on */
/* these sanples, filtering out noise. */
/* */
/* The MCU is al so used during transm ssion. The MCU then reads NRZ-coded */
/* data, and passes it on to the RF transceiver in Manchester fornat. */
/* */
/* A power down node is also inplenented. The MCU puts the CC400/ CC900 into */
/* power down node, then puts itself to sleep. It will awaken on a node */
/* change. Mbde changes are controlled by setting the RX_TX and PD pins. */
/* The MCU configures the CC400/ CCO00 for the appropriate node by sending */
/* it configuration data on the PDATA/ CLOCK/ STROBE pi ns. */
* *
5**5
/* This code nust be adapted to fit the user application. Transm ssion */
/* rates and RF configuration data can be changed by changi ng the */
/* appropriate constants. The values for the configuration data should be */
/* cal cul ated using Smart RF studio, and pasted into the source code. */
/* */
/* As witten, the MCU nerely functions as a protocol translator between */
/* an application circuit communicating using NRZ data, and the RF chip */
/* using Manchester coding. In a typical application, the MCU will have */
/* other functions, this nust be added to the software. This software as */
/* witten does not insert the required preanples in front of data */
/* messages, this is left to the application circuit or to additional */
/* software witten by the user. */
/* */
/**/
/* 1 npl enentation * [
/* */
/* An assenbly | anguage version of this program al so exists. Chipcon */
/* recommends using the assenbly version rather than this C program as the */
/* assenbly | anguage programis faster and provides better timng. */
/* This 'C version of the software was witten to naeke it easier for the */
/* customer to understand the |ogic behind the algorithm */
/* However, for |ow baud-rates (1200 bps or lower), the 'C version is fast */
/* enough to be useable. */
/* */
/* This code was witten and tested using the AR C conpiler for PICl6x MCUs*/
/* 1t was tested using a PICl6F877. The program should be easy to port */
/* to other PIC MCUs by changing the 1/O port definitions. */
/* For meaxi mum performance, it should be conpiled using maxi nrum speed */
/* optimsation in the conpiler. */
/* */
/* Mode configuration: */

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 20 of 45

< Chipcon Application Note ANOOS

/* */
* R R R Sk S R R R S S R R R R R ~k/
/* * PIN * MODE * */
/* R R R R S S S R * */
/* * PD* RX_TX * * */
* R R R Sk S R R R S S R R R R R ~k/
*0 * 0 * Transmt node (TX) * */
*0 * 1 * Recei ve node (RX) * */
/* *1 * X (Don't care) * Power - down node (PD) * */
/* R R R Sk S R S R S S R R R R R ~k/
/* */
/* Timng in TX node: */
* _ _ _ _ _ _ _ _ _ */
CLK_aoJT NN NN NN NN N */
/* */
/* DATA I N pin (NRZ) | bl] b2| b3| b4| b5| b6] b7| b8| b9| */
/* DATA I N pin read R R R R R R R R R R */
/* __________________ ~k/
/ DI O pin (Manchester) | _| _| _| _| | _|_[_|_[_[_1_[_I_[_I_I_I_l *!
/* */
/ Tim ng in RX node: */
/* */
/* DI O pin (Manchester) | | | | | */
/* Sanpl e SSSSSSSSSSSSSSSSSSsS */
[* [
/* CLOCK_QUT pi n / \ / _ */
/* */
/* DATA_OUT pin | | | */
/* */
/* | Bit 1 | Bit 2 | Bit 3...%/

[Rk Kk kR Kk ok ok kR R Xk k ok kR Rk ok k ok kR Rk ok ko kR Rk kR ok kR Rk kR kR Rk ok k kR R Rk ok ok ok kR Rk ok ok ok kR k ko

#i ncl ude "iol6f877.h" /* Includes |/O definitions for 16F877 */
#i ncl ude "inpic.h" /* Includes PIC intrinsic functions */

/* Definitions for bool ean expressions */
#define TRUE (1==1)
#defi ne FALSE ! TRUE

[KR Kk Kk kR Kk k ok kR R Xk ok ok kR R Rk k ok kR Rk ok ko kR Rk kR ok kR Rk kR ok kR Rk ok ok ok kR Rk ok ok ok kR Rk k ok ok kR k ko

/* Overview of port usage: */
/* */
/* PORT: PORTB User interface */
/* pin O CLK_auT Cl ock out */
/* pin1l DATA I N Data in (TX node) */
/* pin 2 DATA_OUT Dat a out (RX nbde) */
/* pin 3 unused */
/* pin 4 PD System configurati on (1=Power down) */
/[* pin 5 RX_TX System configuration (1=RX, 0=TX) */
/* pin 6 unused */
/[* pin 7 unused */
/* */
/* PORT: PORTC Communi cation with CC700/ CC900 */
/* pinO PDATA Configuration pin */
/* pin1l CLOCK Configuration pin */
/* pin 2 STROBE Configuration pin */
/* pin 3 D O Bi -directional data pin */
/* pin 4 SYNC Synchroni sation status */
/* pin 5 unused */
/* pin 6 unused */
/[* pin 7 unused */

[KR Kk ke kK K ok ok ok kK ok ok ok kR R Rk ko kR Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk ok ok kR Rk k k ok ok kR ok ko

/* Pin usage definitions */
#def i ne PDATA RCO

#define CLOCK RCl

#defi ne STROBE RC2

#define DI O RC3

#defi ne SYNC R4

#def i ne CLK_OUT RBO

#defi ne DATA IN RB1

#defi ne DATA_OUT RB2
#defi ne PD RB4

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 21 of 45

(< Chincon Application Note ANOOS

#defi ne RX_TX RB5

/* Data quality constants */

/*************************~k***********************/

/* These val ues can be changed to optimise the programfor different data */

/* and noi se characteristics. */
/* A LIMT_VAL - Decision limt. If Ais smaller than this value, */
/* the signal is a logical "0, else signal is 1" */
/* A LIMT_VAL2 - Decision limt during synchronisation. If Ais */
/* smal ler than this value signal is regarded as a */
/* 0", else it is a’'1 . This value should be */
/* | arger than A LIMT_VAL, and nust be |arger than */
/* 4. */
/* COUNT_LIM T_VAL - Sets the synchronisation |ength. The val ue */
/* determ nes how many 1's (A>=A LIM T_VAL2) */
/* the MCU nust receive before it is synchronised. */
/* Shoul d be >=4. The preanble sent by the */
/* transmtter should be longer than this, as the */
/* RF transcei ver al so needs tine to synchronise. */
/* ASYNCLIMT H, */
/* A SYNCLIMT_LO - Sets the limts for a proper Manchester-coded */
/* bit. If Ais between these thresholds for a */
/* nunber of bits (set by BIT_ERROR LIMT, */
/* descri bed bel ow), the MCU goes out of */
/* synchroni sation. This can be used to detect when */
/* valid data is no | onger received. The MCU t hen */
/* waits for a new preanble. */
/* BIT_ERROR LIMT - Determnes how many invalid bits nust be */
/* recei ved before the MCU | oses synchroni sati on. */

/***********************~k***********************/

#define A
#define A _
#defi ne COUNT_LI
#define A SYNC L
#define A L
#define B

[KR Kk Sk ko K ok ok kK Kk ok ok ok R Rk ok ok R R Rk Rk kR Rk kR kR R Rk kR ok kR Rk kR kR R Rk ok ok kR R Rk ok ok ok kR k ok ok

/* These val ues must be changed for different conbinations of bit-rate and */
/* MCU cl ock frequency. They determine the frequency of the intermal TMRO */
/* interrupt, used both in RX and TX node. See docunentation for details. */

[KR Kk ok kK ok ok kK Kk ok ok kK ok ok kR R Rk Rk R Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk ok ok kR R Rk ok ok ok kR k ko

[RRR KK Kk ok kR Kk ok ok ok kR Xk k ok ok kR Kk ok ok kR Rk ok k ok kR Rk k ok kR Rk ok k ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok kR k k ok ok

/* Fosc = 20 Mz */

[R KK Kk ok kR Kk ok ok ok kR Kk k ok ok kR Kk ok ok kR Ak ok k ok kR Rk ok k ok kR Rk ok k ok kR Rk ok k ok kR Rk ok ok ok kR Rk ok ok ok kR kk ok ok

/* Data rate * TTMNG RX * Rate RX * Error * TIMNGTX * Rate_TX * Error */

KRR Kk ko kK Kk ok ok ok R Kk k ok kR Rk ok k ok kR R Rk ko kR Rk kR kR Rk kR ok kR Rk ok k kR R Rk ok ok ok kR Rk ok ok ok kR k ok ok

/* 2.4 kbps * Ox9E * 0xDO * 0.160% * 0x0B * 0xD1 * 0.160% */
/* 1.2 kbps * 0x1C * 0xDO * 0.160% * 0x03 * 0xD2 * 0.032% */
/* 600 bps * 0x0C * 0xD1 * 0.160% * 0x80 * 0xD4 * 0.257% */
/* 300 bps * 0x04 * 0xD2 * 0.160% * Ox7F * 0xDb * 0.208% */
/********************~k***********************/
/* */
/* For other conbinations of MCU clock frequencies and data-rates, see */
/* application note for values and fornmul as. */
/* */
/**/
/* Default val ues */
/* 20 Mz MU cl ock, 1.2 kbps data rate */

/********************~k***********************/

#defi ne RATE_RX 0xDO
#defi ne RATE_TX 0xD4

#define TI M NG_RX 0x1C
#define TIM NG TX OxCl

/* The location of the interrupt handl er vector. Must be changed for */
/* different PIC MCUs */
#defi ne | NTERRUPT_VECTOR 0x04

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 22 of 45

< Chipcon Application Note ANOOS

/* The CC400/ CC900 configuration paraneters can be nodified here */
/* Cal cul ate new val ues using Smart RF Studio */

/*************************~k***********************/

/* Default val ues: */
/* */
/* Chi p used : CC400 */
/* */
/* X-tal frequency: 12. 000000 MHz */
/* X-tal accuracy : 50 ppm */
/* RF frequency : 433. 920000 */
/* | F Stage : 200 kHz */
/* Frequency sep. : 10 kHz */
/* Data rate : 1.2 kbit/s */
/* Power anp. cl ass: Class B */
/* RF out put power : 10 dBm */
/* Recei ver node : Optimum sensitivity */
/* LOCK i ndi cator : Cont i nous */
/* VCO current : 000 (Maxi mum */

/************************~k***********************/

/* A B, C, D, E, F, G H */
const short RX_CONFIF 8] =

{0x002A, 0x230B, 0x4141, O0x6771, Ox8A00, O0xB803, 0xD24C, OxE450 };
const short TX CONFIF 8] =

{0x082A, 0x230B, 0x4141, Ox67A4, Ox8Al4, 0xB803, 0xD24C, OxE860 };
const short PD CONFIF 8] =

{0x182A, 0x230B, 0x4151, O0x6771, Ox8A00, O0xB803, 0xD24C, OxE860 };

/* gl obal variables shared by main programand interrupt routine */

char ShiftReg; /* Al sanples are shifted into this register */

char AnO; /* The current value of A */

char Anil; /* The val ue of A one sanple ago */

char An2; /* The value of A two sanples ago */

char Sanpl e; /* Nunber of sanple within bit, between 0 and 7 */

char Sync; /* Set to 1 if SWis synchronised, O otherw se */

char Count; /* Counts consecutive 1's received during synchronisation*/

char ResyncEnable; /* Set to 1 if resynchronisation should be perforned */
/* the next interrupt */

char ALimt; /* Decision limt. If ASALimt, the bit received is a 1 */
char ALinmit2; /* Decision limt during synchronisation */
char CountLimt; /* Nunber of consequtive 1's requried to synchronise */
char Nunber; /* 1s O during the first baud in TX node, 1 during */

/* the second */
char Read; /* Used to store value read from DATA IN in TX node */
char BitErrors; /* Counts nunber of consecutive bad bits received */

enum { TXMODE=0, RXMODE=1, PDMODE=2} Mbde;
/* Keeps track of which node software is in */

/********************~k***********************/

/* This routine initialises the MCU. Miust be nodified for different */
/* applications. */

KR Kk ko koK Kk ok ok kR Kk kR kR R Rk ko kR Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk ok k kR R Rk ok ok ok kR Rk ok ok ok kR k ko

void Initialise(void)

{
/* Cear 1/O port latches */
PORTC=0x00;
PORTB=0x00;

/* PORTC : Set Pin O, 1, 2 and 4 as output, Pin 3 as input */
TRI SC=0x08;

/* PORT B: Set Pin O and 2 as output, pin 1, 4 and 5 as input */
TRI SB=0x32;

/~k***********************/
/* This routine sends new configuration data to the CC400/ CC900. */

/********************~k***********************/

voi d Confi gureCCX00(short const Configuration[8])
{

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 23 of 45

< Chipcon Application Note ANOOS

}

char BitCounter;
char WordCounter;

uni on { /* This union is used to easily access the nost */
/* significant bit of the configuration data */

unsi gned short Data

struct

t
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short :1;
unsi gned short MSB : 1;

}

RPRRPRRPRPRPRRRREPREPRERRRRE

h

STROBE=0;

for (WrdCount er =0; Wr dCount er <8; Wor dCount er ++)
{

Dat a=Conf i gur at i on[Wor dCount er] ;
for (BitCounter=0;BitCounter<16; Bit Counter ++)

CLOCK=1;

STROBE=0;

PDATA=NSB;

Dat a=Dat a<<1;

CLOCK=0;

i f (BitCounter==15)
STROBE=1;

el se
STROBE=0;

}

}
CLOCK=1;
STROBE=0;
CLOCK=0;

/~k***********************/

/* This routine configures the software for RX node.
/~k

CC400/ CC900 for RX

Al so configures the

*/
*/

[KR Kk Sk ko K ok ok ok Kk Kk ok ok kR Rk ok ok R Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk kR kR R Rk ok ok ok kR ok kR ok kR k ko

voi d Confi gureRX(voi d)

{

TRI SC=0x08; /* Set DO as input */
Conf i gur eCCX00(RX_CONFI G ;
/* Initialise variables for RX node */

Shi f t Reg=0;

An0=0x08,;

An1=0x08;

An2=0x08;

Sanpl e=0x00;

Count =0x00;
ResyncEnabl e=FALSE;
Sync=FALSE;
ALinmit=A LIMT_VAL;
ALimit2=A LIMT_VAL2;
Count Li mi t =COUNT_LI M T_VAL;
Mbde=RXMODE;

/* Enable TMRO interrupt */

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14

Page 24 of 45

(< Chincon Application Note ANOOS

TMRO=0xFD; /* Set a short tine to next interrupt */

OPTI ON=RATE_RX;

| NTCON=0xAS8; /* Enable interrupts */
}
/**/
/* This routine configures the software for TX npde. Al so configures the */
/* CCA00/ CC900 for TX */

/***************~k***********************/

voi d ConfigureTX(voi d)

{ TRI SC=0x00; /* Set DI O as output */
Conf i gur eCCX00(TX_CONFI G ;
/* Initialise variables for TX node */

Mode=TXMODE;
Nunber =0;

PORTB=0x00; /* Cear PORTB */

/* Enable TMRO interrupt */

TMRO=0xFC, /* Set a short tinme to next interrupt */

OPTI ON=RATE_TX;

| NTCON=OX A8; /* Enables interrupts */
}
/**/
/* This routine configures the software for PD npde. Al so configures the */
/* CC400/ CC900 for power-down. Puts the MCU into sl eep node. */

/~k***********************/
voi d Confi gurePD(voi d)

{
Conf i gur eCCX00(PD_CONFI G ;

CLK_QUT=0;

DATA_QUT=0;

Mbde=PDMODE;

| NTCON=0x88; /* Enable interrupts */

__sleep(); /* Put MCU to sleep */
}
/**/
/* Determ nes which node the MCU should be in by reading the node pins. */

[KRR Kk ko kR Kk ok ok ok ok R Xk k ok kR R Rk k ok kR Rk ok k kR Rk ok k kR Rk kR k kR Rk ok kk kR Rk ok ok ok kR Xk ok ok ok kR k ko

voi d ModeDeci si on()

if (PD) /* PD has higher priority than R{_TX */
Confi gurePD();

else if (RX_TX)
ConfigureRX();

el se
ConfigureTX();

/**********~k***********************/

/* Logic to resynchonise the MCU to the data stream See docunentation for */
/* details regarding the resynchronisation algorithm Called by the RX */
/* interrupt routine. */
/~k************************~k~k~k~k***********************/

voi d Resync(voi d)

if (An2>=Anl) {
if (An1>=An0) ({
if (Anl>=ALinmt) {

if (An2==Anl)
Sanpl e++;

else if (Anl1==An0)
Sanpl e++;

el se {
Sanpl e+=2;
ResyncEnabl e=FALSE;

}

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 25 of 45

< Chipcon Application Note ANOOS

}
el se {
ResyncEnabl e=FALSE;

}

else if (Sync) {
Sanpl e++;
ResyncEnabl e=FALSE;

el se
ResyncEnabl e=FALSE;

}
else if (Anl1>=An0)
Sanpl e++;
el se {
if (Sync) {
if (Anl>=ALimt)
ResyncEnabl e=FALSE;

el se {
Sanpl e+=2;
ResyncEnabl e=FALSE;
}
}
el se
ResyncEnabl e=FALSE;
}
}
/**/
/* This routine is called when TMRO interrupts occur in RX node. It */
/* oversanpl es the incom ng signal and perforns synchronisation and */
/* resynchroni sation. * [

/**/
void RXInterrupt(void)

char 4 dval ue;

char Newval ue;

/* Reinitialise timer, this should be done as quickly as possible */
TMRO=TI M NG_RX;

/* Store old values of A */
An2=An1;
An1=An0;

A dVal ue=shi f t Reg&0x01;
Newval ue=DI G,

/* Shift new sanple into shift register */

Shi ft Reg=Shi ft Reg>>1 | ((Newal ue==0) ?0x00: 0x80) ;
/* Invert new middle bit (Manchester coding) */
Shi f t Reg"=0x08;

/* Update A according to values shifted in and out */
/* (W are really counting the nunber of 0's in the shift register) */
if ((d dval ue==1) &&(Newval ue==0))
AnO++;
if ((d dval ue==0) &&(Newval ue==1))
AnO- - ;

i f ((ShiftReg&x08)==0)
AnO++;

/* Update clock at the appropriate time */
if (Sync) {
i f (Sanpl e==3)
CLK_QUT=1;
i f (Sanpl e==7)
CLK_QUT=0;
}

i f (ResyncEnable) {
/* Resync */

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 26 of 45

< Chipcon Application Note ANOOS

Resync();

else if (Sanpl e==7)
/* Finished with entire bit */

/* Are we in sync? */
if (Sync) {

/* Check if this is an invalid Manchester bit. If it is, */
/* increase the BitErrors count. If not, clear the count */
if ((AnO<=A SYNC LIM T_H)&&(An0>A SYNC LIM T_LO)) {
Bi t Errors++;
if (BitErrors==BI T_ERROR LIMT) {
Sync=FALSE;
Bi t Errors=0;
}
}
el se
Bi t Errors=0;

/* Qutput data */
DATA OUT=(AnO>ALimi t);
CLK_QUT=0;

Sanpl e=0;

ResyncEnabl e=TRUE;

el se {
/* W are not in sync, synchronise */
Sanpl e=0;
if (An0O>=ALimt2) {
if (Count==CountLimt)
Sync=TRUE;
Count ++;

ResyncEnabl e=TRUE;
}
el se {
Count =0;
ResyncEnabl e=TRUE;

}

el se
/* Ready for next sanple */
Sanpl e++;

/* Must clear interrupt flag before returning frominterrupt */
TOl F=0;
}

/~k***********************/

/* This routine is called when TMRO interrupts occur in TX node. It outputs */
/* clock data and converts incom ng NRZ data to Manchester format. */

[KR K Kk kK K ok ok ok kK ok ok kR Rk ok ko kR Rk kR ok kR Rk kR kR R Rk kR ok kR Rk kR kR R Rk ok ok ok kR Rk kR ok kR k ok ok

void TXInterrupt(void)

/* Reinitialise timer, this should be done as quickly as possible */
TMRO=TI M NG_TX;
i f (Nunber==0) ({
/* First baud in bit */
CLK_QUT=1;
Read=DATA | N;
DI O=Read;
Nunber =1;
}
el se {
/* Second baud in bit */
CLK_QUT=0;
Dl O=~Read;
Nunber =0;

/* Must clear interrupt flag before returning frominterrupt */
TOI F=0;
}

[KR K Kk kK K ok ok ok kR Kk ok ok kR Rk ok ko kR Rk kR ok kR Rk kR ok kR Rk kR ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok kR k ko

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 27 of 45

(< Chincon Application Note ANOOS

/* This code is called every tine an interrupt occurs. |If a npde pin has */
/* changed status, the software is initialised to the new node. O herw se, */
/* a TMRO interrupt has occured, and the handling routine appropriate to */
/* the current node is called. */

KR Kk ko kK Kk ok ok kR Kk k ok kR Rk ok k ok kR R Rk ko kR Rk kR ok kR Rk kR ok kR Rk kR kR Rk ok ok ok kR Rk kR ok ok ok k k ko

#pragnma vect or =| NTERRUPT_VECTOR
__interrupt void InterruptHandl er(void)

if (RBIF){
/* Mode bits have changed */
RBI F=0;
MbdeDeci si on();

el se {
/* Must have been the tinmer interrupt */
swi t ch(Mode) {
case RXMODE : RXInterrupt();
br eak;
case TXMODE : TXInterrupt();
br eak;
}
}
}

/~k***********************/

/* Main program The MCU is initialised and put into the correct node. The */

/* software then goes into an infinite | oop. User code will typically be */
/* inserted here. By default, the only thing the software does is indicate */
/* synchroni sed/ not synchroni sed status on the RC4 pin */

[KRR K Kk ok kR Kk ok ok kR R Xk k ok kR R Rk k ok kR Rk ok kk kR Rk ok kk kR Rk ok kk kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok kX k ko

voi d mai n(voi d)

Initialise();
MbdeDeci si on();

whi | e (TRUE) /* Loop forever */
/* Main | oop of program here */
i f(Sync)
SYNC=1;
el se
SYNC=0;

}
}

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 28 of 45

(< Chincon Application Note ANOOS

Example source code — assembly version

EEE R Sk Sk ko S S kR Sk

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

APPL| CATI ON NOTE 008
Oversanpling and data decision for the CC400/ CC900

File : AN_008. asm

M crocontroller:
M crochi p PI C16F87x or conpatibl e
Can be adapted to all nid-range
PIC controllers with enough program
menory by changing 1/ 0O definitions

Aut hor : Code originally witten by Kjell Tore Heien
Modi fied by Karl H. Torvmark

Contact : Chi pcon AS +47 22 95 85 44
wirel ess@hi pcon. com

Version : 1.2 - 2001-08-14

DESCRI PTI ON

Ceneral :

This code oversanpl es the output signal froma

CC400/ CC900 RF-transceiver. The output signal is coded
in Manchester format, the MCU converts to NRZ format by
taking 8 sanples/bit. Signal decision is based on the
majority of these sanples, so noise will be filtered out.

The MCU can al so be used to transm sion. The MCU reads NRZ
signals, sending it to the transceiver in Manchester format.

The configuration of CCX00 is done by the MCU, with three

possi bl e nodes, Transceive(TX), Receive (RX) and Power Down (PD)
I'n Power Down nobde, both the transceiver and MCU are powered
down (sl eep)

The code needs to be changed to fit the application. The val ues
for the configuration registers in CCX00 nust be calculated in

Smart RF Studio for the actual paraneters and copied into the code.

(ARXHval to HPD L_val)

Al so sone timng variables nust be changed to natch the data
rate (TIMNG RX, TIMNGTX Rate_RX and Rate_TX).
See application note for formulas and val ues.

Resour ces:

Program nmenory : 428 words

1/0 pins : Port B pins 0,1,2,4 and 5
Port C pins 0,1,2,3 and 4

Peri pheral s : TVRO

Mbde confi guration:

khkhkkhkhkhhhhkhhhhhkhhhhhhhkhhkhhhkhhkhhkhhhkhkhhkhhkkhkhhkhhhkhkhkkkkkk

* PI'N * MODE *
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhddx *

* PD* RX_TX * *

R SR SRS S EEEEREE RS
*0 * O * Transmit nmode (TX)

*0 * 1 * Recei ve node (RX) *

* 1 * X (Don't care) * Power - down node (PD) *

khkhkkhkhkhhhhkhhhhhhhhhhhhkhhhhhkhhkhhkhhhkhkhhkhhhkhkhhkhhhkhkhkhkkkk

Timng in TX node:

CLK_ouT VNI SN SN ST TN TN T
DATA I N pin (NRZ) | bl] b2| b3| b4| b5| b6| b7| b8| bo|
DATA I N pin read R R R R R R R R R R

EIE Rk Sk Sk kS S kR Sk R S

R R R Sk Sk R S S S S S S S kR S

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14

Page 29 of 45

< Chipcon Application Note ANOOS

DI O pin (Manchester) | _| _| _| _| _| 1[Il _f_1_f_1_f_l_1_I_l

Tim ng in RX node:

DI O pin (Manchester) | | | | |
Sanpl e SSSSSSSSSSSSSSSSsSssSss

CLOCK_QOUT pi n /A \ A _
DATA _QUT pin | | |
| Bit 1 | Bit 2 | Bit 3 ...

R R R Sk Sk R R S S S S S kR S

R R R R R R XS

This part gives names to predefined MU registers
Overvi ew of ports:

; PORT: PORTB - User interface

; pin O CLK_oUT - O ock out

; pin 1 DATA I N - Data in (TX node)

; pin 2 DATA_OUT - Data out (RX node)

; pin 3 unused -

; pin 4 PD - System configuration (PD(1))

; pin 5 RX_TX - System configuration (RX(1)/TX(0))
; pin 6 unused -

; pin 7 unused -

; PORT: PORTC - Communi cation with CC700/ CC900

; pin 0 PDATA - Configuration pin

; pin 1 CLOCK - Configuration pin

; pin 2 STROBE - Configuration pin

; pin 3 D O - Bi-directional data pin

; pin 4 SYNC - Synchroni sati on status

; pin 5 unused -

; pin 6 unused -

; pin 7 unused -
;~k*****~k************************

#defi ne OPTI ON_REG 0x01
#defi ne TMRO 0x01
#defi ne PCL 0x02
#defi ne STATUS 0x03
#def i ne CARRY 0
#define Z 2
#defi ne RPO 5
#define RP1 6
#defi ne PORTB 0x06
#defi ne CLK_QUT 0
#define DATA_IN 1
#defi ne DATA_OUT 2
#define PD 4
#defi ne RX_TX 5
#defi ne PORTC 0x07
#defi ne PDATA 0
#defi ne CLOCK 1
#defi ne STROBE 2
#define DO 3
#define TRI SB 0x06
#define TRI SC 0x07
#defi ne | NTCON 0x0B
#define RBIF 0
#define | NTF 1
#define TOIF 2
#define RBIE 3
#define TOIE 5
#define G E 7

BRI Sk Sk ko S kS kR kS kS

: This part gives names to variables and status registers
; mapped in the general purpose registers

B R R R R R R R R R

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 30 of 45

(< Chincon Application Note ANOOS

#define X 0x20
#define A 0x22
#define Anl 0x23
#defi ne An2 0x24
#define ALIMT 0x25
#define A LIMT2 0x2F
#define R 0x26
#defi ne COUNT 0x27
#define COUNT_LIMT 0x28
#defi ne CONTROL 0x29
#defi ne R_ENABLE 0
#defi ne SYNC 1
#defi ne CONF_LOOP 2
#defi ne TEMP 0x2A
#defi ne TEMPL 0x2B
#defi ne TEMP2 0x2C
#defi ne | NPUT 0x2D
#define DI 0
#def i ne MODE Ox2E
#defi ne RXTX 0
#def i ne NUMBER 1
#defi ne READ 2
#def i ne CONFI G_REG 0x40
#defi ne TABLE_PT 0x41

#defi ne REG_COUNTER 0x42
#defi ne Bl T_COUNTER 0x43
#defi ne Bl T_ERRORS 0x44

BRI kR S

Status flags in registers are defined as follows :

CONTROL (address 0x29)
Bit nunber Fl ag
R_ENABLE
SYNC
CONF_LOCP
unused
unused
unused
unused
unused

~N~NoohkhwWNRFO

I NPUT (address 0x2D)
Bit nunber Fl ag

DI
unused
unused
unused
unused
unused
unused
unused

~NOoO U WNEFO

MODE (addr ess 0x2E)
Bit nunber Fl ag

RXTX

NUMBER
READ

unused
unused
unused
unused
unused

~N~NoobhwWNRFO

1
1
1
1
1
1
1
)
1
)
1
)
1
)
1
)
1
)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

EEE R Sk Sk ko S kS kS R S R Sk

R R R R R R R X xS

Configurations value for CC700/ CC900, given by SnartRF Studio

These val ues nust be changed to match the application

The 3 nost significant bits of A RX_Hval contain the address of register A
in the CC700/ CC900. The rest of A RX Hval contains the 5 bits in

register A for RX nbde. A RX_L_val contains the 8 |east significant bits of
register A (Simlar for register B-H).

R R R Sk Sk R R S S S S S S S R S S kR

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 31 of 45

(< chincon

Application Note ANODS

B R R R R R R R R R

Def aul t val ues:

Cc400

: 12. 000000 MHz
50 ppm

433. 920000

200 kHz

10 kHz

1.2 kbit/s

Class B
: 10 dBm
Optimum sensitivity
Cont i nous

000 (Maxi nmum

B R R R R R R R

; Chi p used

; X-tal frequency

; X-tal accuracy :

; RF frequency

; | F Stage

; Frequency sep.

; Data rate :

; Power anp. cl ass:

; RF out put power

; Recei ver node

; LOCK i ndi cat or

; VCO current

A_RX_H val EQU 0x00
A RX L _val EQU 0x2A
B_RX_H val EQU 0x23
B RX L_val EQU 0x0B
C RX_H val EQU 0x41
C RX_L_val EQU 0x41
D RX_H val EQU 0x67
D RX L_val EQU 0x71
E_RX_H val EQU 0x8A
E RX L_val EQU 0x00
F_RX_H val EQU 0xB8
F RX L_val EQU 0x03
G RX_H val EQU 0xD2
G RX_L_val EQU 0x4C
H RX_H val EQU OxE4
H RX L_val EQU 0x50
A TX H val EQU 0x08
A TX_L_val EQU 0x2A
B _TX H val EQU 0x23
B TX L val EQU 0x0B
C TX H val EQU 0x41
C TX L val EQU 0x41
D TX H val EQU 0x67
D TX L val EQU OxA4
E TX H val EQU 0x8A
E TX L val EQU 0x14
F_TX H val EQU 0xB8
F_TX L val EQU 0x03
G TX _H val EQU 0xD2
G TX L val EQU 0x4C
H TX H val EQU OxE8
H TX L val EQU 0x60
A PD H val EQU 0x18
A PD L val EQU 0x2A
B_PD H val EQU 0x23
B PD L_val EQU 0x0B
C PD_H val EQU 0x41
C PD L_val EQU 0x51
D PD H val EQU 0x67
D PD L_val EQU 0x71
E_PD H val EQU 0x8A
E PD L_val EQU 0x00
F_PD H val EQU 0xB8
F PD L_val EQU 0x03
G PD_H val EQU 0xD2
G PD L_val EQU 0x4C
H PD H val EQU OxE8
H PD L_val EQU 0x60

EEE R Sk Sk o S kR S S kR Sk
1

; These constants nust not

be changed

BRI Sk Sk ko S kS kR kS kS

1

TABLE_PT val
SAVPLE_HALF

EQU
EQU

0x00
0x03

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 32 of 45

(< Chincon Application Note ANOOS

SAMPLE_ALL EQU 0x07

R R R Sk R R S S S S S S kS R S S

These val ues nust be changed when using different conbinations of bit-rates
and MCU cl ock frequencies. Sets the period of the internal TMRO interrupt,
used in both RX- and TX node.

R R R Sk Sk R R S S S S S R S kR S

R R R Sk Sk R S S S S S S kS R S

* Fosc = 20 MHz *

R R R Sk Sk R S S S S S R R S S kR S S

* Data rate * TIMNG RX * Rate RX * Error * TIMNG TX * Rate TX * Error *

R R R Sk Sk R Sk Sk S S S S R S Sk R S

* 9.6 kbps * OxE5# * 0xDO * 0.160% * 0x84 * 0xDO * 0.224% *
* 4.8 kbps * 0xC5 * 0xDO * 0.160% * 0x02 * 0xDO * 0.032% *
* 2.4 kbps * 0x84 * 0xDO * 0.160% * OxFF * 0xD1 * 0.064% *
* 1.2 kbps * 0x02 * 0xDO * 0.160% * Ox7F * 0xD3 * 0.304% *
* 600 bps * OxFF * 0xD1 * 0.160% * Ox7E * OxD4 * 0.152% *
* 300 bps * OxFD * 0xD2 * 0.032%* Ox7E * OxDb5 * 0.004% *

R R R R R X E]

Use one NOP instruction in end_interrupt_RX, otherw se renove it.

For ot her conbinations of MCU clock frequencies and data-rates, see
application note for values and formul as.

R R R R R R R R R X E]

Defaul t val ues
20 Mz MU cl ock, 1.2 kbps data rate

R R R Sk Sk kS S S S S S kR S

TI M NG_RX EQU 0x02
TI M NG _TX EQU Ox7F
Rat e_RX EQU 0xDO
Rate_TX EQU 0xD3

EEE R R Sk kS kS kR S S kR S

These tim ng val ues val ues can be changed to optim ze synchronisation and
data decision for a given application

A LIMT_val - Decision limt, if Ais smaller than the
val ue, signal is 0, else signal is 1
A LIMT_val 2 - Decision limt while synchronising, if

; Ais smaller than the value, signal is

; 0, else signal is 1 (Mist be >=5)

; COUNT_LIM T_val - Decides how |l ong the synchronisation

; part shoul d be. The val ue indicates how

; many 1's (A=>A LIMT_val 2) the MCU nust

; receive before it is synchronised (Should be >=4)
; A SYNC LIMT_hi,
; A SYNCLIMT lo - If Aslo and A<hi for SYNC LOSS LIMT bits, the
; recei ver decl ares | oss of synchronisation

: BI T_ERROR LI M T_val

; - How many low quality bits are

; accepted before sync is |ost

; (Shoul d be >=2)

EEE R Sk Sk S S kS kR kR R Sk

A LIMT val EQU 0x04
A LIMT val 2 EQU 0x05
COUNT_LIM T _val EQU OX0A
A SYNC LIM T_hi EQU 0x05
ASYNCLIMT lo EQU 0x03
BIT_ERROR LIM T _val EQU 0x02

B R R R R R R R
1
EEE R R Sk ko S kR Sk kR S
1

cokkkkkkkkkkhkkhkhkkkok ok khkhkkhkkhhhhkhdhhkhhhhhhhhhhhkhhhhhhhhhhhkhkhhkkhk
; PROGRAM STAR

EEE Rk Sk kR R S R S S
1

B R R R R R R R
1

ORG 0x00 ; Location of reset vector
reset: GOoro mai n ; After reset, go to main program

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 33 of 45

(< Chincon Application Note ANOOS

ORG 0Xo04 ; Location of interrupt vector
interrupt: GOTO Servicelnterrupt ; If interrupt->go to Servicelnterrupt
ORG 0x50

EEE R Sk Sk ko S kS R Sk R S kS
1

; Main program
EEE Rk Sk kS kS S R S kR Sk
;

mai n:
BCF STATUS, RPO
BCF STATUS, RP1 ; Sel ect BankO
CLRF PORTC ; Cear output data |atches
CLRF PORTB
BSF STATUS, RPO
MOVLW 0x08

; Clear output data |atches

; Sel ect Bankl

; PORTC. Pin 0, 1 og 2 as output

; (PDATA, CLOCK and STROBE)
MOVW\F TRI SC ; PORTC. Pin 3 as input (DO
MOVLW 0X32 ; PORTB: Pin 0 og 2 as out put

; (CLK_QUT and DATA_QUT)

; PORTB: Pin 1, 4 og 5 as input

: (DATA_IN, RX/TX and PD)

; Sel ect BankO

; CGo to node_deci sion

MOVWF TRI SB

BCF STATUS, RPO
QOoro node_deci si on

B R R R R R R R
1

; Interrupt handl er

B R R R R R R R R R
1

Servi cel nterrupt:

BTFSC I NTCON, RBIF ; Check if external interrupt
(PD or RX/ TX)
If external interrupt ->
go to node_deci si on

Q1o node_deci si on

interrupt_internal:

BTFSC MODE, RXTX ; Check if systemwas in RX TX-node
; before interrupt

Goro node_RX routine ; If RXTX=1 ->go to nmode_RX routine

GOoro node_TX routine ; I f RXTX=0 ->go to npde_TX routine
node_deci si on:

MOVF PORTB, 0 ; Read PORTB

MOVWF TEMWP ; Store PORTB in TEWP

BTFSC TEMP, 4 ; Check PD

GOoro node_PD ; If PD=1 -> go to node_PD

GOoro node_RX If RX_TX=1 ->go to node_RX

BTFSC TEMP, 5 © Check RX_TX
GOTO node_TX © 1f RCTX=0 ->go to node TX

EEE Rk Sk kS S S kS kR R S
sk kKKK KKKk kX Kk kkkkxk RN MODE *AAFAI KKk Kk Ak kkok ok kA ko kok ok ok Ak k ok ok kA Rk k ok ok ok Rk k ok ok kR k Kk
EEE Rk Sk kS Sk kS kR Sk Rk Rk S

Initialisation of the RX-npde. The CC700/ CC900 is configured and registers
; used in MCU are initialised. The TMRO-interrupt is scaled for the correct

data-rate, and enabled. Waits for interrupt.
BRIk Sk kS S kS kR S R

node_RX:
BSF STATUS, RPO ; Sel ect Bankl
BSF TRISC, DO ; PORTC. Set DI O pin as input
BCF STATUS, RPO ; Sel ect BankO

CCX00_config_RX: ; Downl oad configuration to CCX00 with

; CLOCK, PDATA og STROBE (table
; look-up: TABLE_RX)

MOVLW TABLE_PT val
MOWE TABLE_PT

TABLE_PT initialy set to 0 ->

Shows where in the table to | ook up
(FromO to 15).

Counts the registers configured in

CLRF REG_COUNTER

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 34 of 45

< Chipcon Application Note ANOOS

BCF

BCF
BSF

| oop_out er _RX:
CLRF

CALL
MOVWF

I NCF

BTFSC
GOoTO

CONTROL, CONF_LOCP

PORTC, STROBE
PORTC, CLOCK

Bl T_COUNTER

Tabl e_RX
CONFI G_REG

TABLE_PT, 1

CONTROL, CONF_LOOP
| oop_i nner _RX_2

| oop_i nner _RX_1:

RLF
BTFSC
BSF
BTFSS
BCF
BCF

I NCF

BSF
BTFSS

GOTO
BSF
GOTO

CONFI G REG, 1

STATUS, CARRY
PORTC, PDATA
STATUS, CARRY
PORTC, PDATA
PORTC, CLOCK

Bl T_COUNTER, 1

PORTC, CLOCK
BI T_COUNTER, 3

| oop_i nner _RX_1

CONTROL, CONF_LOCP

| oop_out er _RX

| oop_i nner _RX_2:

RLF

BTFSC
BSF
BTFSS
BCF
BCF

I NCF

BTFSC
GOoTO

BSF
Goro

set _strobe_RX:
BSF
BSF
BCF
I NCF

BCF
BTFSS

GOTO

CONFI G_REG, 1

STATUS, CARRY
PORTC, PDATA
STATUS, CARRY
PORTC, PDATA
PORTC, CLOCK
Bl T_COUNTER, 1

Bl T_COUNTER, 3
set _strobe_RX

PORTC, CLOCK

| oop_i nner _RX_2

PORTC, STROBE
PORTC, CLOCK
PORTC, STROBE
REG COUNTER, 1

CONTROL, CONF_LOOP

REG_COUNTER, 3

| oop_out er _RX

1

CC700/ CC900 (8 16bit

Initially O.
Two | oops are

used.

registers).

CONF_LOOP=0 -> | oop_inner_RX_1
CONF_LOOP=1 -> | oop_i nner _RX 2

; Set ST
; Set CL

This | oop reads val ues from TABLE_RX

ROBE=0
OCK=1

and stores themin CONFI G REG

C ear

Look-up table

Bl T_COUNTER. Counts the bits
read from CONFI G_REG

Val ue read from TABLE RX i s

stored in CONFI G REG

Increment table pointer. Read next

regi ster next

tinme.

Checks which | oop to execute

; CONF_LOOP=0 -> | oop_i nner _RX_1.

CONF_LOOP=1 -> | oop_i nner _RX 2

Used for _Hregisers fromtable.
MSB of CC700/ CC900 registers

Rot at e CONFI G_REG.
Mbst significant bit
Check if PDATA shoul d be high

; Ifohi

gh -> Set

nmoves to CARRY

PDATA=1

Check if PDATA should be | ow
PDATA=0
Set CLOCK=0. For 50% duty cycle

If low -> Set

configuration clock -> Include 4 NOP

I ncrease Bl T_COUNTER Another bit is

read.
Set CLOCK=1
Check if all

8 bits in register

CONFI G_RX have been read.

;o If not

all 8

bits have been read ->

Go to loop_inner_RX 1

This |l oop is done.

Execut e

| oop_i nner _RX_2 next tine.

If all
Co to | oop_out

er _RX

8 bits have been read ->

Used for _L regisers fromtable.
LSB of CC700/ CC900 registers

Rot at e CONFI G_REG.
Most significant bit
Check if PDATA shoul d be high

If high -> Set PDATA-1
Check if PDATA shoul d be | ow
If low -> Set PDATA=0
Set CLOCK=0.
I ncrease BI T_COUNTER Another bit is
read.
Check if all 8 registers have
been read.
If all 8 bits have been read ->
Go to set_strobe RX
Set CLOCK=1
; If not all 8 bits are read ->

noves to CARRY

Go to | oop_inner_RX 2

Set STROBE=1
; Set CL
Set STROBE=0

OCK=1

I ncrease REG COUNTER. An entire 16

bit register

been confi gured.
Do | oop_i nner _RX_1 next tinme

; Check

if all

in the CC700/ CC900 has

8 registers in

CC700/ C900 have been confi gured
If not-> Go to | oop_outer_RX

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 35 of 45

< Chipcon Application Note ANOOS

BCF
BCF

init_RX

CLRF
MOVLW
MOVWF
MOVWF
MOVWF
CLRF
CLRF
CLRF
MOVLW
MOVWF
MOVLW
MOVWF

MOVLW
MOVWF
CLRF
BSF

PORTC, STROBE
PORTC, CLOCK

A LIMT_val
ALIMT

A LIMT_val 2
A LIMT2

COUNT_LIMT val

COUNT_LIMT
I NPUT
MODE, RXTX

enabl e_i nterrupt _RX

MOVLW
MOVWF

BSF
MOVLW
MOVWF
BCF
MOVLW
MOVWF

OxFD
TVRO

STATUS, RPO
Rat e_RX
OPTI ON_REG
STATUS, RPO
0xA8

| NTCON

wait _for_interrupt:

BTFSS
BCF
BTFSC
BSF

GOTO wait _for_interrupt

CONTROL, SYNC
PORTC, 4
CONTROL, SYNC
PORTC, 4

Set STROBE=0
Set CLOCK=0

; Gve registers initial values

X=00000000

A=1000 (LSB)
An1=1000 (LSB)
An2=1000 (LSB)
R=000 (LSB)
COUNT=000 (LSB)
: CONTROL=00 (LSB)

: ALIMT=A LIMT_val

ALIMT2=A LIMT val 2
(>4, Must not sync on 000..)

COUNT_LI M T=COUNT_LI M T_val

I NPUT=0 (LSB)

Set RXTX=1 -> shows RX-npde after
TMRO- i nt errupt

Enabl es interrupt in RX-nbde

Change TMRO register value (first
interrupt after just a short while)
Sel ect Bankl

Set TIMERO Rate
Sel ect BankO

Enabl es interrupts (external and
internal) -> @ E=1, TOlE=1, RBIE=1,
others=0 (incl RBIF OG TO1F)

Updat e sync pin

If SYNC bit is set,

set SYNC pin

If SYNC bit is cleared,
clear SYNC pin

; Loop. Wait for interrupt.
Return here after TMRO-interrupt

B R R R R R R R R R

:*********** T'\/RO_INTERRUPT IN RX_,VO:E EEE SRR SRS EEEEEEEEEEEEREEREEEEREEEEEEEEESEESS
I~k
; Each time an interrupt occurs, the DIOpin is sanpled.

8 interrupts (sanples) per bit. Resynchronisation is done after each bit.
EEE R R Sk ko S kS kR kR S S

nmode_RX routi ne: ; TMRO-interrupt routine in RX-node
MOVLW TI'M NG_RX
MOVWWF TVRO ; TMRO=TI M NG_TX
BCF I NPUT, DI ; Cear D bit in INPUT-register
BTFSC PORTC, DI O ; Check DIOpin
BSF | NPUT, DI ;o If DO=1 -> D=1
store_two_|ast_A ; Store two |ast values of A
MOVF Anl, O
MOWWF An2 ; An2=Anl
MOVF A 0
MOVWF Anl ;o Anl=A

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 36 of 45

< Chipcon Application Note ANOOS

cal culate_A:
BCF
BTFSC
BSF
RRF
MOVLW
XORWF
BTFSS
I NCF
BTFSS
DECF
BTFSC
DECF
BTFSS
I NCF

sanpl e_nunber:
BTFSC
GOoro
MOVF
XORLW
BTFSC
GOoro
MOVF
XORLW
BTFSC
BSF
I NCF
[co)ye]

sync:
BTFSC
[co))0)
MOVF
SUBWF

BTFSS
GOoTO

CLRF
CLRF
BSF

Goro

sync_ok:

MOVF
SUBLW
MOVWF
BTFSC
GOoro
MOVF
SUBLW
MOVWF
BTFSS
GOoro

I NCF
MOVF
SUBLW
BTFSS
GOTO

BCF

signal _OX:
CLRF

sync_ok2:
SUBWF

STATUS, CARRY
I NPUT, DI
STATUS, CARRY
X 1

0X08

X 1

X 7

A 1

STATUS, CARRY

1

y

SPXPXP

RPWER W

CONTROL, R_ENABLE
resync

R 0

SAMPLE_ALL
STATUS, Z

sync

R 0

SAMPLE_HALF
STATUS, Z

PORTB, CLK_OUT
R 1

end_i nterrupt _RX

CONTROL, SYNC
sync_ok
ALIMT2, O
A 0

TEMP

TEMP, 7

sync_A upper

COUNT

R

CONTROL, R_ENABLE
end_i nterrupt _RX

A 0

A SYNC LIM T_hi
TEMP

TEWP, 7

signal _OK

A0

ASYNCLIMT lo
TEMP

TEMP, 7

signal _OX

Bl T_ERRCRS, 1

Bl T_ERRCRS, 0

Bl T_ERROR LI M T_val
STATUS, Z

sync_ok2

CONTRQL, SYNC

Bl T_ERRORS

A O

Cal cul ate new A

Cl ear CARRY

Check DI (DI O pin)

If DDOwas 1 -> CARRY=1

Shift DIO value into X (fromright)

Inverts bit nr 4 in X
If X7=0 -> Increment A

If CARRY=0 -> Decrenent A
If X3=1 -> Decrenment A

If X3=0 -> Increment A

Check if R _ENABLE=1
If R ENABLE=1 -> Go to resync

R xor 00000111
Check if R=111
If R=111 -> Go to sync

R xor 00000011
Check if R=011

; If RE011 -> Set CLK QUT =1
R=R+1

Check SYNC-bit in CONTROL-register
; If SYNC=1 -> CGo to sync_ok

A-ALIMT2
Store difference in TEMP

; Check if TEMP is pos/neg
(AS/ <A LIMT)
If A>=A LIMT2 (D C=1)
sync_A _upper
If AKALIMT -> clear COUNT
Clear R
Set R_ENABLE=1

-> G to

Detect | oss of sync

© WEA SYNC LIMT_hi-A
Store difference in TEMP

Skip if result positive

Result is negative, signal is K

© WA SYNC LIMT lo-A
Store difference in TEMP

Skip if result negative
Result is positive, signal is OK
Signal is not K

I ncrease nunber of detected errors
WEBI T_ERRCR_LI M T_val - Bl T_ERRORS
Skip if zero
Cont i nue
Reached error limt
Cl ear sync bit

Clear errors

AALIMT

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 37 of 45

< Chipcon Application Note ANOOS

BTFSS
GOTO
BCF
BCF
CLRF

BSF
Goro

dat a_out _hi gh:

BSF
BCF
CLRF
BSF

NCOP
GOTO

sync_A upper:

TEMP
TEWP, 7

dat a_out _hi gh
PORTB, DATA _QUT

PORTB, CLK_OUT

R

CONTROL, R_ENABLE
end_i nterrupt _RX

PORTB, DATA_OUT
PORTB, CLK_OUT

R

CONTROL, R _ENABLE

end_i nterrupt _RX

Store difference in TEMP
Check if TEMP i s pos/neg

(AS/ <A LIMT)
If A>SSALIMT (DI O=1) ->
Go to data_out_high

; 1f A<ALIMT (DI O=1) ->
Set DATA QUT=0

; Set CLK_OUT=0
Cear R
Sett R _ENABLE=1

; Set DATA QUT=1
; Set CLK_QUT=0
Cear R
Set R_ENABLE=1
(resync next interrupt)

Synchronise; bit received is a 1

MOVF COUNT_LIMT, O
SUBW COUNT, 0 ; COUNT-COUNT_LIM T
BTFSC STATUS, Z ; Z=0 if COUNT=COUNT_LIMT
BSF CONTROL, SYNC ; If COUNT=COUNT_LIMT -> Set SYNC=1
| NCF COUNT, 1 ; COUNT=COUNT+1
CLRF R ; Tear R
BSF CONTROL, R_ENABLE ; Set R_ENABLE=1
NOP
Goro end_i nterrupt _RX
resync:
MOVF Anl, O
SUBWF An2, 0 ;. An2- Anl
MOVWAF TEMP1 ; Store difference in TEMP1
BTFSS TEWMPL, 7 ; Check if TEMP1 is pos/neg
i (An2>/ <Anl)
QOoro resync_1 ; If An2>=Anl -> Go to resync_1
MOVF A 0
SUBWF Anl, O ;o Anl-A
MOV TEMP2 ; Store difference in TEMP2
BTFSC TEMP2, 7 ; Check if TEMP2 is pos/neg (Anl>/<A)
GOoro resync_2 ; If Anl<A -> Go to resync_2
I NCF R 1 ; R=R+1 (no resync)
GOoro end_i nterrupt _RX2
resync_1:
MOVF A 0
SUBWF Anl, O ;o Anl-A
MOWWF TEMP2 ; Store difference in TEMP2
BTFSS TEMP2, 7 ; Check if TEMP2 is pos/neg (Anl>/<A)
Q1o resync_3 ; If Anl>=A -> Go to resync_3
BTFSC CONTROL, SYNC ; Check SYNC-bit in CONTROL-register
I NCF R 1 ; If SYNC=1 -> R=R+1 (no resync)
GOro end_i nterrupt _RX2
resync_2:
NOP
BTFSS CONTROL, SYNC ; Check SYNC-bit in CONTROL-register
GOTO end_interrupt_RX2 ; If SYNC=0 -> Go to end_interrupt_RX
MOVF ALIMT, 0
SUBWF Anl, O ; AAALIMT
MOVWWF TEMWP ; Store difference in TEWP
BTFSC TEMP, 7 ; Check if TEMP is pos/neg
i (An1>/<A LIMT)
Goro r_add_2 ; If not An1>=A LIMT -> Go to r_add_2
GOoro end_i nterrupt _RX2
Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 38 of 45

(< Chincon Application Note ANOOS

resync_3:
MOVF

BTFSC
GOTO
MOVF

BTFSC
GOTO
MOVF
SUBWF
MOVWF
BTFSS

GOTO
GOTO

no_resync:
I NCF
Q1o

r_add_2:
I NCF
I NCF
NOP

TEMPL, 1

STATUS, Z
no_resync
TEMP2, 1

STATUS, Z
no_resync
ALIMT, 0
Anl, O
TEMP
TEWP, 7

r_add_2
end_i nterrupt _RX2

R 1
end_i nterrupt _RX2

R 1
R 1

end_i nt errupt _RX2:

BCF

CONTROL, R _ENABLE

end_i nterrupt _RX

NOP
BCF

RETFI E

I NTCON, TOI F

TEMP1 witten to itself

(Z is affected)

Check if An2=Anl

If An2=Anl -> Go_to no_resync
TEMP2 witten to itself

(Z is affected)

Check if Anl=A

If Anl=A -> Go_to no_resync

AALIMT
Store difference in TEMP

; Check if TEMP is pos/neg
(An1>/ <A LIMT)

; If An1>=A LIMT -> Go to r_add2

R=R+1 (no resync)

R=R+2 (resync)

Set R _ENABLE=0

Use only NOP when datarate= 9.6 kbps
Set TOlI F=0 - > Ready for next

TMRO-i nterrupt

Return from i nterrupt

B R R R R R R R R R R

ckkkkkkhkkkkkkhkkkkkkk TX_ ,\D:E R R R Sk Sk kS S S S R S S S

B R R R R R R

the MCU are initialised. The TMRO-interrupt

rate,

Initialisation of the TX-nopde.
: and enabl ed. Waits for

CCX00 is configured and registers used in

is scaled for the correct data-

interrupt.

B R R R R R R R

node_TX:
BSF
BCF
BCF

STATUS, RPO
TRISC, DO
STATUS, RPO

CCX00_config_TX:

MOVLW
MOVWF

CLRF

BCF

BCF
BSF

| oop_out er _TX:
CLRF
CALL

TABLE_PT val
TABLE_PT

REG_COUNTER

CONTROL, CONF_LOOP

PORTC, STROBE
PORTC, CLOCK

BI T_COUNTER

Tabl e_TX

Sel ect Bank1l
PORTC: Set DI O pin as output
Sel ect BankO

Downl oad configuration to

CC700/ CC900 usi ng CLOCK, PDATA

and STROBE (tabl e | ook-up: TABLE TX)
TABLE_PT is initially set to 0 ->
Shows where in the table to | ook up
(FromO to 15).

Counts the regisers configured

in the CC700/ CC900 (8 16bit
registers). Initially 0.

Two | oops are used.

CONF_LOOP=0 -> | oop_inner_TX 1
CONF_LOOP=1 -> | oop_i nner_TX 2

Set STROBE=0

Set CLOCK=1

This | oop reads val ues from TABLE_TX
and stores themin CONFI G REG

Clears BI T_COUNTER Counts the bits
read from CONFI G_REG

Look-up table

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 39 of 45

< Chipcon Application Note ANOOS

MOWWF CONFI G_REG

I NCF TABLE_PT, 1

BTFSC CONTROL, CONF_LOOP
Goro | oop_i nner _TX_ 2

| oop_i nner _TX_1:

RLF CONFI G_REG 1
BTFSC STATUS, CARRY
BSF PORTC, PDATA
BTFSS STATUS, CARRY
BCF PORTC, PDATA
BCF PORTC, CLOCK

I NCF Bl T_COUNTER, 1
BSF PORTC, CLOCK
BTFSS BI T_COUNTER, 3
GOoro | oop_i nner _TX_ 1
BSF CONTROL, CONF_LOCP
GOro | oop_out er _TX

| oop_i nner _TX_2:

RLF CONFI G REG, 1
BTFSC STATUS, CARRY
BSF PORTC, PDATA
BTFSS STATUS, CARRY
BCF PORTC, PDATA
BCF PORTC, CLOCK

I NCF Bl T_COUNTER, 1
BTFSC BI T_COUNTER, 3
Q1o set _strobe_TX
BSF PORTC, CLOCK
GOro | oop_i nner _TX_ 2

set _strobe_TX:

BSF PORTC, STROBE
BSF PORTC, CLOCK
BCF PORTC, STROBE
I NCF REG COUNTER, 1
BCF CONTROL, CONF_LOCP
BTFSS REG COUNTER, 3
GOoro | oop_out er _TX
BCF PORTC, STROBE
BCF PORTC, CLOCK
init_TX
BCF MODE, RXTX
BCF MODE, NUMBER
CLRF PORTB

enabl e_interrupt _TX:
MOVLW OxFC

Value read from TABLE TX i s
stored in CONFI G_REG
I ncrenent table pointer.

Read next register
Checks which | oop

; CONF_LOOP=0 -> loop_inner_TX_ 1

next tine.
to execute

CONF_LOOP=1 -> | oop_inner_TX 2

Used for

H regisers fromtable.

MBB of CC700/ CC900 registers

Rot at e CONFI G_REG.
Mbst signi ficant

bi t

nmoves to CARRY

Check if PDATA shoul d be high

If high -> Set

PDATA=1

Check if PDATA should be | ow

If low -> Set

PDATA=0

Set CLOCK=0. For 50% duty-cycle
configuration clock -> Include 4 NOP

I ncrease Bl T_COUNTER. Anot her

is read.
Set CLOCK=1

Check if all 8 bit

bi t

s in register

CONFI G_TX have been read.

; If not all

8 bits have been read ->

Go to loop_inner_TX 1

This |l oop is done.
| oop_i nner
If all

Execut e

RX 2 next tine.
8 bits have been read ->

CGo to |l oop_outer_TX

Used for _L regist

ers fromtable.

LSB of CC700/ CC900 registers

Rot at e CONFI G_REG.
Most significant

bi t

noves to CARRY

Check if PDATA shoul d be high

I'f high -> Set

PDATA=1

Check if PDATA shoul d be | ow

PDATA=0

bi t

8 registers have been

8 bits have been read ->

If low -> Set
Set CLOCK=0.
I ncrease Bl T_COUNTER. Anot her
is read.
Check if all
read.
1f all
Go to set_strobe TX
Set CLOCK=1
; If not all

8 bits have been read ->

Go to loop_inner_TX 2

Set STROBE=1
Set CLOCK=1
Set STROBE=0

I ncrease REG COUNTER, an entire

16 bit register

in the CC700/ CC900

has been confi gured.
Do | oop_inner_TX_ 1 next tinme

Check if all

8 registers in the

CC700/ CC900 has been confi gured
If not-> Go to | oop_outer_TX

Set STROBE=0
Set CLOCK=0

G ves registers initial
RXTX=0 -> shows TX-node

Set

val ues

after TMRO-interrupt

Set NUMBER=0 (Deci

des which (of 2)

interrupt to execute in TX-node)

Cl ear PORTB

Enabl es i nterrupt

in TX-node

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 40 of 45

(< chincon

Application Note ANODS

MOVWF

BSF

MOVLW
MOVWF

BCF

MOVLW
MOVWF

GOTO

node_TX routi ne:

coded si gnal

TMVRO

STATUS, RPO
Rat e_TX
OPTI ON_REG
STATUS, RPO
OxA8

| NTCON

wai t _for_interrupt

at the DIO pin.

R R R R R R R R R E]

MOVLW TI M NG_TX

Sel ect Bankl

Set TIMERO Rate
Sel ect BankO

Enabl es interrupts (external and
internal) -> G E=1, TOlI E=1, RBIE=1,
O hers=0 (incl RBIF and TO1F)

R R R Sk Sk R R S S S S R Sk kR S S

wxxxxkkkxxx TNVRO- | NTERRUPT | N TX- MODE * % % % % % % & o o s sk % o ok ok sk ok ok % ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok

R R R R Sk R R S S S R Sk S R S S

Two interrups occur per bit,

one for each baud of the outgoing Manchester

MOWF TMRO

BTFSC MODE, NUMBER

GOoro second_TX

Goro first_TX
first_TX

BSF PORTB, CLK_QUT

BCF MODE, READ

BTFSC PORTB, DATA_IN

BSF MODE, READ

BTFSC MODE, READ

BSF PORTC, DI O

BTFSS MODE, READ

BCF PORTC, DI O

BSF MODE, NUMBER

GOoro end_interrupt _TX
second_TX:

BCF PORTB, CLK_OUT

BTFSC MODE, READ

BCF PORTC, DI O

BTFSS MODE, READ

BSF PORTC, DI O

BCF MCODE, NUMBER

end_interrupt _TX

NOP
BCF

RETFI E

I NTCON, TOI F

TMRO-interrupt routine in TX-node

TVRO=TI M NG_TX

Check which interrupt to execute
If NUMBER=1 -> Go to second_TX
If NUMBER=0 -> Go to first_TX

First baud
Set CLK_OUT=1

Set READ=0 in MODE-register

; Check DATA_IN-pin
If DATA IN=1 -> Set READ=1
Check READ
I f READ=1 (DATA IN=1) ->
Set DIO=1 (First baud)
Check READ
I f READ=0 (DATA | N=0) ->
Set DI O=0 (First baud)
Set NUMBER=1

Second baud

; Set CLK_QUT=0
Check READ
I f READ=1 (DATA IN=1) ->
Set DI O=0 (Second baud)
Check READ
I f READ=0 (DATA | N=0) ->
Set DI O=1 (Second baud)
Set NUMBER=0

Set TOlIF=0 ->
Ready for next TMRO-interrupt
Return from i nterrupt

B R R R R R R

ckkkkkkhkhkkkkkhkkkkkkk PD_ ,\D:E R R R S S Sk kS S S R S S S

B R R R R R R R R

enters sl eep node.

Only the external

interrupt is enabled (nbde change)

EEE Rk Sk ko S kS kR S kR Sk

Initialisation of the PD-nbde. The CC700/ CC900 is configured and the MCU

node_PD:

CCX00_confi g_PD:

MOVLW TABLE_PT val
MOWE TABLE_PT

Downl oad configuration to CCX00

usi ng CLOCK, PDATA og STROBE

(tabl e | ook-up: TABLE_PD)

TABLE_PT initially set to 0 ->
Shows where in the table to | ook up

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 41 of 45

< Chipcon Application Note ANOOS

(FromO0 to 15).

Counts the registers configured in
the CC700/ CC900 (8 16bit registers)
Initially O.

Two | oops are used.

CONF_LOOP=0 -> | oop_inner_PD 1
CONF_LOOP=1 -> | oop_inner_PD 2

Set STROBE=0

Set CLOCK=1

CLRF REG COUNTER

BCF CONTROL, CONF_LOCP

BCF PORTC, STROBE
BSF PORTC, CLOCK

| oop_out er _PD: ; This loop reads val ues from TABLE PD
; and stores themin CONFI G REG
CLRF Bl T_COUNTER ; Cears BIT_COUNTER Counts the bits
; read from CONFI G_REG
CALL Tabl e_PD ; Look-up-table
MOWWF CONFI G_REG ; Value read from TABLE RX is stored
;1 n CONFI G_REG
; Increnent table pointer.
; Read next register next tine.
BTFSC CONTROL, CONF_LOOP ; Checks which | oop to execute
Goro | oop_i nner _PD 2 ; CONF_LOOP=0 -> | oop_inner_PD 1
; CONF_LOOP=1 -> | oop_inner_PD 2

I NCF TABLE_PT, 1

| oop_i nner_PD 1: Used for _Hregisters fromtable.
MSB of CC700/ CC900 regi ster

Rot at e CONFI G_REG

Mbst significant bit noves to CARRY

Check if PDATA shoul d be high

RLF CONFI G REG 1
BTFSC STATUS, CARRY

BSF PORTC, PDATA If high -> Set PDATA=1

BTFSS STATUS, CARRY Check if PDATA shoul d be | ow
BCF PORTC, PDATA If low -> Set PDATA=0

BCF PORTC, CLOCK Set CLOCK=0. For 50% duty cycle

configuration clock -> Include 4 NOP

I ncrease Bl T_COUNTER. Anot her bit

is read.

Set CLOCK=1

Check if all 8 bits in register

CONFI G_PD have been read.

GOoro | oop_i nner_PD 1 ; If not all 8 bits have been read ->
; Go to loop_inner_PD 1

; This loop is done. Execute

; loop_inner_PD 2 next tine.

I NCF Bl T_COUNTER, 1

BSF PORTC, CLOCK
BTFSS BI T_COUNTER, 3

BSF CONTROL, CONF_LOCP

If all 8 bits have been read ->
Go to | oop_outer_PD

GOoro | oop_out er _PD

| oop_i nner _PD_2: Used for _L registers fromtable.
LSB of CC700/ CC900 register

Rot at e CONFI G_REG.

Most significant bit noves to CARRY

Check if PDATA shoul d be high

RLF CONFI G REG, 1
BTFSC STATUS, CARRY

BSF PORTC, PDATA If high -> Set PDATA=1

BTFSS STATUS, CARRY Check if PDATA shoul d be | ow

BCF PORTC, PDATA If low -> Set PDATA=0

BCF PORTC, CLOCK Set CLOCK=0.

I NCF Bl T_COUNTER, 1 I ncrease BI T_COUNTER Anot her bit
is read.

BTFSC BI T_COUNTER, 3 Check if all 8 registers have
been read.

Goro set _strobe_PD If all 8 bits have been read ->

Go to set_strobe_PD.

BSF PORTC, CLOCK Set CLOCK=1

GOoro | oop_i nner _PD 2 ; If not all 8 bits have been read ->

; Go to loop_inner_PD 2

set _strobe_PD:

BSF PORTC, STROBE ; Set STROBE=1
BSF PORTC, CLOCK Set CLOCK=1
BCF PORTC, STROBE Set STROBE=0

I NCF REG COUNTER, 1 Increase REG COUNTER An entire

16 bit register in the CCr00/ CC900
has been confi gured.

Do | oop_inner_PD 1 next tinme

Check if all 8 registers in the

BCF CONTROL, CONF_LOOP
BTFSS REG COUNTER, 3

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 42 of 45

(< Chincon Application Note ANOOS

GOro | oop_out er _PD ;
BCF PORTC, STROBE ;
BCF PORTC, CLOCK ;

init_PD ;
CLRF PORTC ;
BCF PORTB, CLK_QUT ;
BCF PORTB, DATA _QUT

enabl e_i nterrupt _PD:

MOVLW 0x88

MOVWAF | NTCON ;
wai t _for_interrupt_PD: ;

SLEEP ;

NOP ;

Goro wai t _for_i nterrupt_PD’

B R R R R R R R R R

CC700/ CC900 are configured

If not-> Go to | oop_outer_PD
Set STROBE=0

Set CLOCK=0

Clear all output pins

Cl ear output data |atches
Set CLK_OUT=0
; Set DATA_QUT=0

Enabl es interrupt (external) ->
Sets G E=1, RBIE=1,

the rest are 0 (including RBIF)

Wait for External
MCU in sl eep node
Does not hing before an interrupt
occurs

interrupt on PORTB

Look-up tables used for configuration of CC700/CC900

; 3 tables,

ORG 0x06

Tabl e_RX:
MOVFW TABLE_PT
ADDWF PCL, 1
RETLW A RX_H val
RETLW A RX L _val
RETLW B_RX_H val
RETLW B_RX_L_val
RETLW C RX_H val
RETLW C RX_L_val
RETLW D _RX_H val
RETLW D RX L_val
RETLW E RX_H val
RETLW E_RX_L_val
RETLW F_RX_H val
RETLW F_RX_L_val
RETLW G RX_H val
RETLW G RX_L_val
RETLW H RX_H val
RETLW H RX_L_val
ORG 0x18

Tabl e_TX:
MOVFW TABLE_PT
ADDWF PCL, 1
RETLW A TX_H val
RETLW A TX L _val
RETLW B TX H val
RETLW B TX L “val
RETLW C TX_ H val
RETLW C TX L “val
RETLW D TX_ H val
RETLW D TX L “val
RETLW E TX_ H val
RETLW E TX L “val
RETLW F TX_ H val
RETLW F TX L “val
RETLW G TX_ H val
RETLW G TX L “val
RETLW H TX_ H val
RETLW H TX L “val
ORG Ox2A

Tabl e_PD:

one for each possible node:
EEE R Sk Sk S kS R Sk S

PD, RX and TX

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 43 of 45

(< Chincon Application Note ANOOS

MOVFW
ADDWF

RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW

TABLE_PT
PCL, 1

A PD H val
A _PD_L_val
B PD H val
D L_val
) H val
) L_val
) H val
) L_val
) H val
) L_val
) H val
) L_val
) H val
L_val
D _H val
H PD L_val

UUOOUJ

'U'U'U'U'U'U'U'U'U'U'U'U

UUUUUUUUUU

IOG)TITI[TIITI

BRI Sk Sk S kS S S S S kS kR S kR S S
1

END

EEE Rk Sk kS kR Sk R Sk
1

Chipcon AS

ANO008 Oversampling (Rev. 1.0) 2001-09-14

Page 44 of 45

(< Chincon Application Note ANOOS

This application note is written by the staff of Chipcon to the courtesy of our customers.
Chipcon is a world-wide distributor of integrated radio transceiver chips. For further information
on the products from Chipcon Components please contact us or visit our web site.

Contact Information

Address:
Chipcon AS
Gaustadalléen 21
N-0349 Osilo,
NORWAY

Telephone : (+47) 22 9585 44
Fax : (+47) 22 95 85 46
E-mail : wireless@chipcon.com
Web site : http://mww.chipcon.com

Disclaimer

Chipcon AS believes the furnished information is correct and accurate at the time of this printing. However, Chipcon
AS reserves the right to make changes to this application note without notice. Chipcon AS does not assume any
responsibility for the use of the described information. Please refer to Chipcon’s web site for the latest update.

Chipcon AS ANOO08 Oversampling (Rev. 1.0) 2001-09-14 Page 45 of 45

	Keywords
	Introduction
	Table of Contents
	Why use oversampling?
	Microcontroller limitations
	Data decision and synchronisation
	Resynchronisation
	Software RSSI / Signal Quality
	Software squelch
	MCU interface
	Data decision algorithm
	Using the software
	Calculating variables for desired oscillator frequency and data rate
	Software implementation
	Algorithm flowcharts
	Example source code - C version
	Example source code - assembly version

